



## **Angelpunkt** im Verkaufsgespräch

Angelpunkt im Verkaufsgespräch ist der fachmännische Rat, das Urteil aus berufenem Mund. Gerade bei Fernsehgeräten verläßt sich der Kunde auf Ihre Erfahrung, und dieses Vertrauen verpflichtet zu klaren, überzeugenden Argumenten.

Siemens-Fernsehgeräte sind bekannt für besonders gute Bildwiedergabe, und dieser Maßstab gilt erst recht bei den neuen Modellen. Natürlich wurde auch der Bedienungskomfort weiterentwickelt. Entscheidend aber blieb das scharfe, stabile, kontrastreiche Bild:

## ein Bild wie ein Foto



Hochleistungsgerät der Sonderklasse FT 226

## WICHTIGE NEUE ERZEUGNISSE

zur Kontrolle sämtlicher Stromkreise - zur genauen Feststellung aller Fernsehstörungen

Der große neue Universal-



nach CCIR bzw. für westeuropäische Normen

## **MODELL 1076**

Leichte Punkt-zu-Punkt-Signalzuführung. Sie sehen die Störung auf dem Fernsehschirm und korrigieren sie zweimal so rasch und leicht als früher!

Vereinigt alle Eigenschaften der bekannten B & K-Modelle 1075 und A107 in einem Gerät. Ausgestattet mit Schaltertuner, negativer Vorspannung, Impuls-Tastung und Bildröhren-Modulation.



Hier haben wir ein weiteres aufsehenerregendes Spitzenerzeugnis von B & K. Durch direkt ablesbare Einzelskalen macht dieses automatische Röhrenvoltmeter es leichter und rascher denn je möglich, das richtige Meßergebnis auf der richtigen Skala genau abzulesen, und zwar ohne irgendwelche Ableseschwierigkeiten, Berechnungen oder Irrtumsmöglichkeiten, und ohne daß Umrechnungstabellen nötig sind. Das Gerät vereinfacht in außerordentlicher Weise das richtige Ablesen von Spitze zu Spitze – Spannungen komplexer Wellenformen in Video-, Synchronisier- und Ablenkungsstromkreisen, Impulsstromkreisen, Radarsystemen usw.



Mit dem Fernseh-Analysator können Sie Ihre eigenen Fernseh-Signale jederzeit und an jedem Punkt einspeisen und Ihr eigenes, auf der Fernseh-Bildröhre erzeugtes Testbild beobachten. Dadurch wird es möglich, Fernsehstörungen in jeder Stufe festzustellen und zu korrigieren, und zwar im Video-, Ton-, Hf- und Ablenkteil, sowohl beim Schwarzweiß- als auch beim Farbfernsehen. Lieferbar für 110 Volt/60 Hz, 110 Volt/50 Hz und 220 Volt/50 Hz.

Fordern Sie vollständige Kataloge und Preise an!

## MODELL VTVM 375

- Sofortiges fehlerloses Ablesen, ohne Multiplizieren
- Automatisches Röhrenvoltmeter mit folgenden Merkmalen:
  - Eigene Skala in voller Größe für jeden Bereich
  - Bereich-Einschalter stellt automatisch die richtige Skala ein
  - Immer nur eine einzige Skala sichtbar
  - Alle Skalen für direkte Ablesung
    Kein Multiplizieren . . . Kein falsches Ablesen
  - Durchbrennsicher

Eingangswiderstand: 11 M $\Omega$  in allen Gleichstrombereichen; Genauigkeit  $\pm$  3%,; volle Skala bei Wechsel- und Gleichstrom; Empfindlichkeit 100 Mikroampere; Präzisions-Widerstände mit  $\pm$  1% Genauigkeit; Antiparallaxe Spiegelskala für präzises Ablesen; leicht sichtbare irisierende 1,5-V-Batterie. Netz: 117 V/50... 60 Hz; kräftiges, schönes Metallgehäuse mit passendem Kombinations-Schwenkständer und Handgriff. Größe 27 x 17 x 10 cm. Nettogewicht 3,6 kg.

Fordern Sie vollständige Kataloge und Preise an!

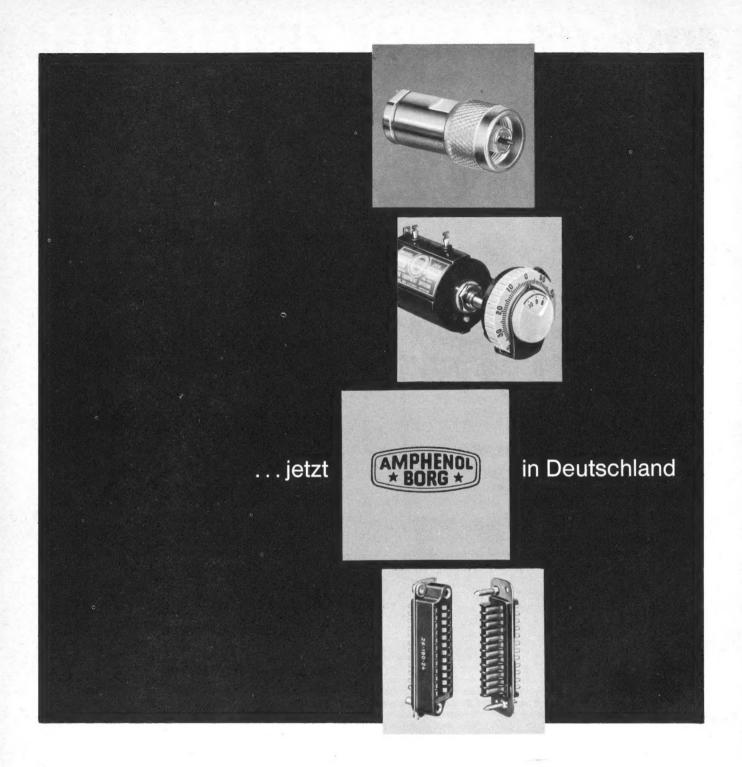
## BIT VO MATIC 360

#### Automatisches Volt-Ohm-Milliamperemeter — Durchbrennsicher

Direktablesung, vollständige Einzelskala für jeden Bereich. 43 Bereiche einschl. 18 getrennten Drehskalen. Leichtes, rasches, fehlerfreies Ablesen – direkt, ohne Multiplizieren. Nur jeweils eine Skala sichtbar. Bereichumschalter stellt automatisch die richtige Skala ein und macht es unmöglich, auf der falschen Skala abzulesen. Kein falsches Ablesen, kein Rechnen mehr. Sie sehen sofort das vollständige Meßergebnis. Spiegelskala. Empfindlichkeit: 20000 Ohm pro Volt Gleichstrom; 5000 Ohm

pro Volt Wechselstrom. Genauigkeit:  $\pm~3\,^{\rm 0}/_{\rm 0}$  bei Gleichstrom,  $\pm~5\,^{\rm 0}/_{\rm 0}$  bei Wechselstrom (volle Skala). Polwechselschalter.

Komplett mit Batterien und Prüfleitungen einschl. Ständer zum richtigen Sehen in 4 Stellungen.


Fordern Sie Kataloge und Preise an!



## EMPIRE EXPORTERS INC.

277 BROADWAY NEW YORK 7, N. Y.

Vertreten durch: HELMUT BÜHLER, DÜSSELDORF, GRAF-RECKE-STRASSE 18 Generalvertretung für die Schweiz: EGLI, FISCHER & CO. A. G., ZÜRICH



Nie zuvor waren die technischen Anforderungen an elektronische Bauelemente so groß wie heute. Zuverlässigkeit unter allen Bedingungen ist der entscheidende Faktor. 30 Jahre Erfahrung als Pionier und führender Hersteller auf dem Gebiet der elektrischen Steckvorrichtungen schufen Bauelemente, die den schärfsten Anforderungen gewachsen sind.

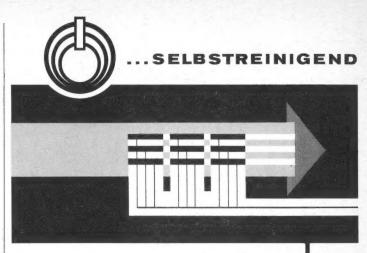
Unser großes Lager ermöglicht es uns, kurzfristig zu liefern. Darüberhinaus entsteht in München-Deisenhofen ein nach den modernsten Gesichtspunkten ausgerichtetes Werk. Für eine eingehende technische Beratung stehen unsere Verkaufsingenieure gern zur Verfügung.


#### AMPHENOL-BORG ELECTRONICS GMBH





vorteilhaft mit der Spezialtastatur für

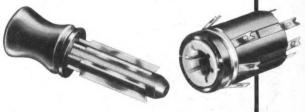

## Elektrofachleute



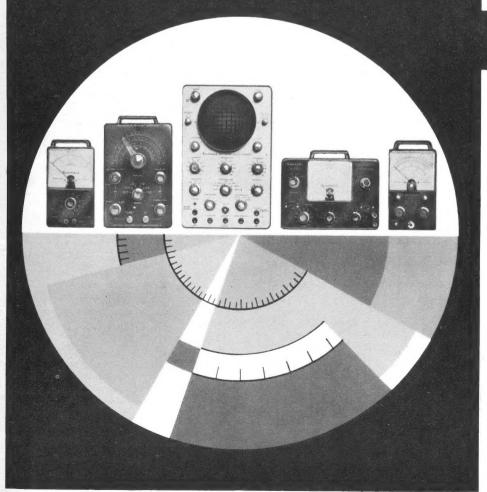
Handschriftliche Einfügungen und viele Anschläge werden durch die Spezialtastatur eingespart.

Ausführliche Druckschriften sendet Ihnen

#### OLYMPIA WERKE AG. WILHELMSHAVEN




. der wachsenden natürlichen Korrosion entgegenwirkend - ist das Bestreben bei der Ausbildung von elektrischen Kontakten, die ihre Aufgabe lange und gleichbleibend sicher erfüllen sollen.


Nicht zufällig besitzt eine Bürste eine Vielzahl von Borsten, die in der Betätigungsrichtung voneinander unabhängig, hintereinander wirken.

So wird auch bei jeder Betätigung die Kontaktstelle ge-

reinigt.



TUCHEL-KONTAKT Heilbronn/Neckar · Postfach 920 · Tel. \* 6001







Ein Meßplatz mit HEATH-GERATEN für alle Prüf- und Abgleicharbeiten im Rundfunk-, Fernseh- und Phono-Service.

zum Bild v. l. n. r.:

**Tonfrequenz-Millivoltmeter** Mod. AV-3

Bausatz DM 239,-; Betriebsfertiges Gerät DM 279.-

Abgleichgenerator Mod. RF-1

Bausatz DM 212,-; Betriebsfertiges Gerät DM 275,-

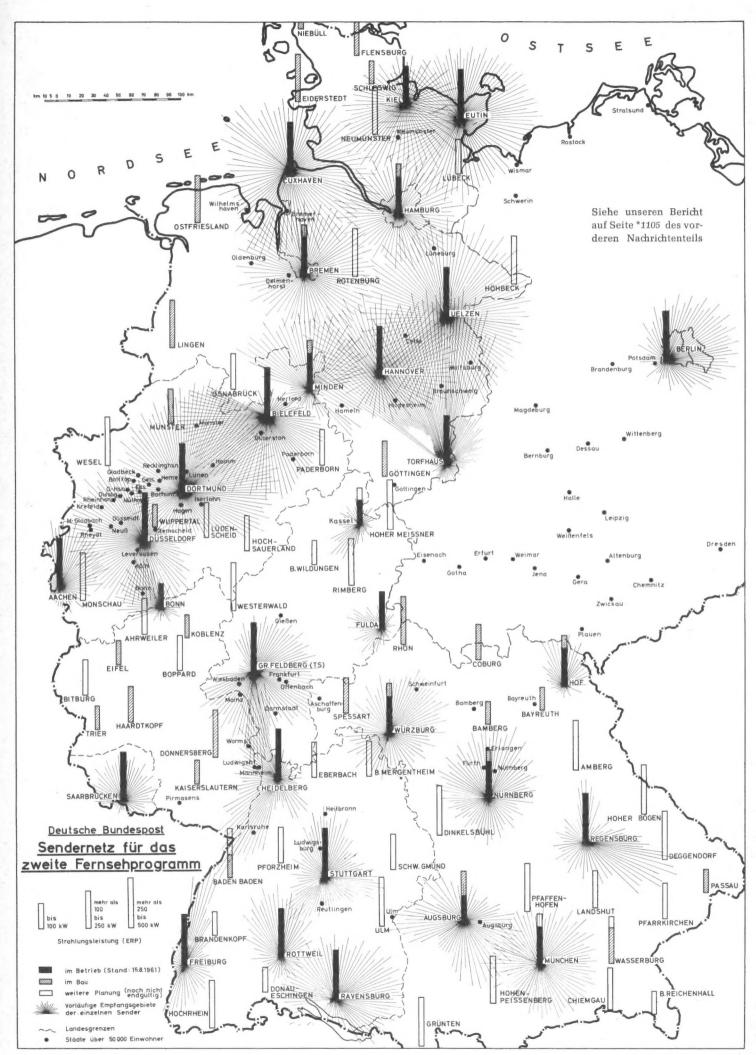
**Breitband-Oszillograf** 

Mod. 0-12/S

Betriebsfertiges Gerät DM 699.-

**RC-Generator** 

Mod. AG-9A


Bausatz DM 289,-; Betriebsfertiges Gerät DM 339,-

Universal-Röhrenvoltmeter

Mod. V-7A/UK

Bausatz DM 185,-; Betriebsfertiges Gerät DM 249,-

| Bitte | senden | Sie   | mir | unverbin | dlich | n, riii.<br>nähere | Infor   | uastr.<br>mation | 49<br>0n. |
|-------|--------|-------|-----|----------|-------|--------------------|---------|------------------|-----------|
| Name  |        | ***** |     |          | Ort , |                    | ******* |                  |           |
|       |        |       |     |          | StrN  | r                  |         | Abt. I           | MP.       |



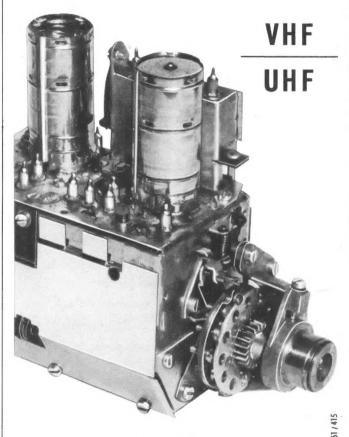
## KURZ UND ULTRAKURZ

Fernbediente Kurzwellensender. Für die Überseefunkstelle Elmshorn der Deutschen Bundespost wird Telefunken neun Kurzwellen-Großsender mit vollständiger Fernbedienung liefern, die vom Kontrollraum in Elmshorn, von Hamburg und von der Empfangsstelle Ütlandshorn/Ostfriesland (Norddeich Radio) ausgelöst werden kann. Pro Sender sind-bis zu 120 Kommandos vorgesehen (u. a. dekadische Frequenzeinstellung, Senderleistung, Antennenauswahl, Antennenrichtung, Betriebsart usw.). Um sie zu übertragen, stehen zwei Wechselstrom-Telegraphierkanäle zur Verfügung, über die die Kommandos nach einem verschlüsselten Impulscode gegeben werden. Die Ausführung am Sender erfolgt erst nach Vergleich mit den ursprünglich gegebenen Befehlen, und zwar wird der Kommandovorgang zuerst gespeichert und später auf einen besonderen Durchschaltebefehl hin ausgelöst.

Erstverbindung Deutschland-Aalandinseln. Unserem Mitarbeiter Dipl.-Ing. H. Wisbar, Weener/Ems (DL 1 LB), gelang am 23. September um 22.10 Uhr MEZ ein Funkkontakt mit der finnischen Amateurstation OH Ø RJ in Mariehaan/Aalandinseln auf 144,86 MHz (2-m-Band) über mehr als 1000 km hinweg. Dies ist eine offizielle 2-m-Erstverbindung, denn international zählen die Aalandinseln als ein selbständiges Land; die Erstverbindung mit Finnland selbst gelang dem deutschen Amateur DL 3 YBA bei Hannover schon vor einigen Monaten. Die Lautstärke der Station in Mariehaan stieg während der Verbindung mit Weener kurzfristig mehrmals um 2 bis 3 Lautstärkestufen als Folge von Reflexionen an ionisierten Meteorbahnen.

Kurzwellenkonferenz in Genf. Seit dem 11. September tagen in Genf Fachleute aus der ganzen Welt, um die Neuordnung der Kurzwellenverteilung zwischen 11 und 75 m zu beraten. Diese Expertengruppe unter dem Vorsitz des Präsidenten des Internationalen Frequenz-Registrierungsbüros in Genf (IFRB), René Petit, wird dem Verwaltungsrat der International Telecommunication Union (ITU), auch Weltnachrichtenverein genannt, einen Bericht unterbreiten. Dann soll entschieden werden, ob die in der Vergangenheit mehrfach gescheiterten Versuche, einen allseits anerkannten Kurzwellen-Verteilungsplan auf Weltbasis zu erstellen, erneut aufgenommen werden sollen.

Stereo-Rundfunk in den USA in der Krise. Wenige Monate nach dem Beginn des Stereo-Rundfunks in den USA befindet sich diese hoffnungsvolle Entwicklung in einer ernsten Krise. Auf der Herbstagung der Electronic Industries Association (entspricht unserer Fachabteilung Rundfunk und Fernsehen im ZVEI) kam es zu keiner Einigung über einen an sich nötigen Werbefeldzug. Die wenigen UKW-Rundfunksender mit Stereo-Programmen beklagen sich über die fehlende Unterstützung durch die Geräteindustrie und vor allem über fehlende "sponsors" für Stereo-Programme. Die ersten Stereo-Rundfunkempfänger sind sehr teuer. Einige UKW-Stationen wollen Stereo wieder aufgeben oder stark einschränken, andere scheuen die Investitionen von vornherein und verzichten auf die Aufnahme des Stereo-Sendebetriebes.


Neues von den schwimmenden Werbesendern. Die Tätigkeit der illegalen schwimmenden Rundfunksender im Oeresund zwischen Schweden und Dänemark und vor Stockholm hat dänische und schwedische Regierungsstellen zu Beratungen darüber angeregt, wie man diese Sender effektiv an der Ausstrahlung ihrer Werberundfunkprogramme hindern kann. Seit dem 15. September hat überdies im Oeresund ein zweiter schwimmender Sender unter der Firma Danmarks Commercielles Radio (DCR) auf dem Schiff Lucky Star unter libanesischer Flagge den Betrieb aufgenommen. Das Fahrzeug wurde in Lübeck ausgerüstet, der Sender ist allerdings erst auf See eingebaut worden.

Aufwand für die Wahl-Berichterstattung. Das Deutsche Fernsehen hatte für seine Wahl-Sondersendung am Abend des 17. September und in der anschließenden Nacht bis 03.15 Uhr folgende Geräte eingesetzt: zwei Übertragungswagen, einen Filmgeberwagen, acht Kameras, einen Film- und einen Diageber, ein Trickmischpult und zwölf Monitore. Im Bundeshaus und in seiner Umgebung waren 3700 m Mikrofon- und 1500 m Kamerakabel verlegt. Ferner waren Richtfunkstrecken von bzw. nach Berlin, Frankfurt a. M., München, Stuttgart und Saarbrücken in Betrieb. Man hatte zehn Flugzeuge für den Transport des Filmmaterials gechartert. Für die Bedienung der Anlagen in Bonn waren 28 Techniker und 20 Kabelhilfen tätig.

|                               | A) Rundfunkteiln                 | ehmer | B) Fernsehteilnehmer |                         |  |
|-------------------------------|----------------------------------|-------|----------------------|-------------------------|--|
| Bundesrepublik<br>West-Berlin | 15 264 635 (+ 17<br>849 892 (+ 2 |       |                      | (+ 61 569)<br>(+ 3 657) |  |
| zusammen                      | 16 114 527 (+ 19                 | 626)  | 5 397 369            | (+ 65 226)              |  |

Das Fotokopieren aus der FUNKSCHAU ist nur mit ausdrücklicher Genehmigung des Verlages gestattet. Sie gilt als erteilt, menn jedes Fotokopierblatt mit einer 10-Pf-Wernarke versehen mird (von der Inkassostelle für Fotokopiegebühren, Frankfurt/Main, Gr. Hirschgraben 17/19, zu beziehen). — Mit der Einsendung von Beiträgen übertragen die Verfasser dem Verlag auch das Recht, die Genehmigung zum Fotokopieren laut Rahmenabkommen vom 14. 6. 1958 zu erteilen.

# VALVO KANALWÄHLER



#### VHF-KANALWÄHLER

VALVO AT 7635/80
mit handgeregelter Feinabstimmung
VALVO AT 7638/80
mit gespeicherter Feinabstimmung
VALVO AT 7639/80
mit gespeicherter Feinabstimmung
und VHF- UHF- Umschaltung

VALVO AT 7641/80 mit handgeregelter Feinabstimmung und VHF- UHF- Umschaltung

#### UHF-KANALWÄHLER

VALVO 6322/01 Standardausführung VALVO 6326/01 mit automatischer Frequenzregelung



VALVO GMBH HAMBURG 1

# Eine hervorragende Spezialausbildung zum Ingenieur, Techniker und Meister

bietet Ihnen das

## TECHNIKUM WEIL AM RHEIN

Das Technikum Weil am Rhein - empfohlen durch den Techniker- und Ingenieure Verein e. V. - führt

- Tageslehrgänge mit anschließendem Examen
- Fernvorbereitungslehrgänge mit anschließendem Seminar und Examen
- Fernlehrgänge zur beruflichen Weiterbildung mit Abschlußzeugnis

in folgenden Fachrichtungen durch:

Maschinenbau Elektrotechnik

Bau

Hochfrequenztechnik

Betriebstechnik Stahlbau

Vermessungstechnik

Physik

Heizung und Lüftung Kraftfahrzeugtechnik

Holz

Tiefbau

Techniker und Meister haben hier außerdem eine Weiterbildungsmöglichkeit zum Ingenieur. Studienbeihilfen und Stipendien können durch den Verband zur Förderung des technischwissenschaftlichen Nachwuchses gewährt werden.

Nach erfolgreichem Abschlußeines Lehrganges erhält der

Teilnehmer das Diplom v. Technikum Weil am Rh.



Nutzen Sie diese gute Fortbildungsmöglichkeit. Schreiben Sie bitte noch heute an das Technikum Weil a. Rhein und verlangen Sie den kostenlosen Studienführer 2/1961.





Er peilt in den Bergen: Der Ermittlung des genauen Standortes weitentfernter oder auch unbekannter UKW-Sender dient eine besondere, auf Bergen oder hohen Gebäuden stationierte Empfangs- und Peilanlage. Ein Tonbandgerät ermöglicht eine Dokumentation des mit der Anlage aufgenommenen Nachrichteninhaltes und das Einblenden von Beobachtungsmitteilungen des Peilfunkers über ein Mikrofon (Aufnahme: Telefunken)

#### KURZ-NACHRICHTEN

Peter von Zahn, Chef der Windrose Inc., Washington, wird in Hamburg-Sasel ein kleines Studio für die Bearbeitung der Filme errichten, die er im Deutschen Fernsehen zeigen wird. \* Vom 23. bis 28. Oktober sendet der Norddeutsche Rundfunk (auch über die Sender von Radio Bremen und des Westdeutschen Rundfunks) ein Schulfernseh-Versuchsprogramm. \* In Japan wird demnächst das Jedermann-Funksprechgerät allgemein zugelassen werden. Die Senderleistung ist auf 0,1 W (!) begrenzt; es werden Kanäle im 27-MHz-Bereich zugeteilt werden. \* Der englische Kurzwellenamateur M. Bond, G 3 NWF, betreibt seit einiger Zeit einen volltransi-storisierten Telefoniesender im 7-MHz-Bereich (40-m-Band) mit 10 W Leistung. Er erreichte in kurzer Zeit fünf europäische Länder. \* Nach einer Zusammenstellung von Ampex gibt es gegenwärtig in Europa 152 Magnetband-Anlagen für die Fernseh-Programmaufzeichnung, und zwar 19 von der Radio Corp. of America (davon sechs im Bundesgebiet) und 133 von Ampex (davon 33 im Bundesgebiet). \* Über die Produktion von Transistoren liegen folgende Schätzungen für 1961 vor: Japan 200 Millionen Stück, USA 180 Millionen, Bundesgebiet mit West-Berlin 50 Millionen, Frankreich und England je 25 Millionen Stück. \* In den USA sollen gegenwärtig 180 Millionen Taschen-Rundfunkempfänger in Benutzung sein — das ist ein Stück is amerikanischen Staatsbinger \* zung sein — das ist ein Stück je amerikanischen Staatsbürger. \*
Die Electronic Division der CBS Inc., USA, hat nach Einstellung
der Röhrenproduktion jetzt auch die Fertigung von Halbleiter-Erzeugnissen eingestellt und Teile der Fabrikeinrichtung an Raytheon verkauft. \* Frühere monofone Schallplattenaufnahmen von Toscanini sind jetzt von der RCA nach einem besonderen Verfahren "stereofonisiert" worden. Natürlich handelt es sich nur um eine trickreiche Pseudo-Stereofonie, etwa durch Einfügen gewisser Halleffekte bei ausgewählten Frequenzbereichen und – beispiels-weise – Hervorheben der Geigenstellen im linken und der Gello-Baßpartien im rechten Kanal. Bezeichnung: Electronic-Stereo, Vertrieb in Deutschland: Teldec.

## Funkschau mit Fernsehtechnik und Schallplatte und Tonband Fachzeitschrift für Funktechniker

vereinigt mit dem Herausgegeben vom FRANZIS-VERLAG MÜNCHEN RADIO-MAGAZIN Verlag der G. Franz'schen Buchdruckerei G. Emil Mayer

Verlagsleitung: Erich Schwandt · Redaktion: Otto Limann, Karl Tetzner Anzeigenleiter u. stellvertretender Verlagsleiter: Paul Walde

Erscheint zweimal monatlich, und zwar am 5. und 20. jeden Monats. Zu beziehen durch den Buch- und Zeitschriftenhandel, unmittelbar vom Verlag und durch die Post

Monats-Bezugspreis 2.80 DM (einschl. Postzeitungsgebühr) zuzügl. 6 Pf Zustellgebühr. Preis des Einzelheftes 1.40 DM. Jahresbezugspreis 32 DM. Redaktion, Vertrieb und Anzeigenverwaltung: Franzis-Verlag, München 37, Postfach (Karlstr. 35). – Fernruf 55 16 25/27. Fernschreiber/Telex: 05/22 301. Postscheckonto München 57 58.

Hamburger Redaktion: Hamburg-Meiendorf, Künnekestr. 20 — Fernr. 638399

Berliner Geschäftsstelle: Berlin W 35, Postdamer Str. 145. – Fernr. 24 52 44 (26 32 44). – Postscheckkonto: Berlin-West Nr. 622 66.

[26 32 44]. — Postscheckkonto: Berlin-West Nr. 622 66.
Verantwortlich für den Textteil: Ing. Otto Limann; für den Anzeigenteil: Paul Walde, München. — Anzeigenpreise nach Preisliste Nr. 11. — Verantwortlich für die Österreich-Ausgabe: Ing. Ludwig Ratheiser, Wien. Auslandsvertretungen: Belgien: De Internationale Pers, Berchem-Antwerpen, Cogels-Osylei 40. — Dänemark: Jul. Gjellerups Boghandel, Kopenhagen K., Solvgade 87. — Niederlande: De Muiderkring, Bussum, Nijverheidswerf 19-21. — Österreich: Verlag Ing. Walter Erb. Wien VI, Mariahilfer Straße 71. — Schweiz: Verlag H. Thali & Cie., Hitzkirch (Luzern).
Alleiningen Nachdruckrecht auch auszungsweise für Holland wurde dem Alleiniges Nachdruckrecht, auch auszugsweise, für Holland wurde dem Radio Bulletin, Bussum, für Österreich Herrn Ingenieur Ludwig Ratheiser, Wien, übertragen.

Drud: G. Franz'sche Buchdruckerei G. Emil Mayer, München 37, Karlstr. 35. Fernsprecher: 551625/26/27. Die FUNKSCHAU ist der IVW angeschlossen.



#### Das revidierte UHF-Sendernetz für das Zweite Fernsehprogramm

Vergleiche die Karte auf Seite \*1102

In FUNKSCHAU 1960, Heft 15, Seite 383, veröffentlichten wir die Planung der Deutschen Bundespost für das Sendernetz des Zweiten Fernsehprogramms im UHF-Bereich; in der Folgezeit brachten wir mehrmals die Senderlisten mit Kanalangaben, Angaben der Umstellung usw. Nunmehr bringen wir die neueste, revidierte Planung des UHF-Sendernetzes. Ein Vergleich der Karte, die wir auf Seite \*1102, vor Beginn des Textteils, zum Abdruck bringen, mit den Angaben in Heft 15/1960 zeigt, daß

1. die Zahl der UHF-Sender von 82 auf 89 gestiegen ist, und daß 2. einige Sender aus der Vorjahrsplanung verschwunden sind; sie wurden entweder durch neue Standorte ersetzt oder es handelt

sich um präzisere Standortangaben nach Abschluß der Feinplanung. Aus der Karte geht die ungefähre Leistung (ERP = effektiv abgestrahlte Energie) der im Betrieb bzw. im Bau befindlichen und der geplanten Sender hervor sowie die ungefähre Reichweite der am 15. August fertig gewesenen 30 Strahler. Zugleich erkennt man, wo es noch "weiße Flecken" gibt. Der Karte zufolge ist die Ver-sorgung mit dem Zweiten Fernsehprogramm im Norden von Schleswig-Holstein, im westlichen Niedersachsen, in einigen Teilen von Hessen sowie im Raum Bayerns und Württemberg-Badens noch unzureichend; besonders schlecht versorgt war bis November Rheinland-Pfalz, hier bringt der vom 1. 11. an betriebene, in der Karte noch nicht als betriebsbereit eingezeichnete UHF-Sender Haardtkopf, den sich die Bundespost vom SWF leiht, erste Erleichterung.

Immerhin wohnen heute schon mehr als zwei Drittel aller Bundesbürger innerhalb der sicheren Reichweite der UHF-Sender und können somit das Zweite Programm empfangen. Wieviele Fernsehteilnehmer insgesamt schon auf UHF-Empfang umgestellt haben, kann nur vermutet werden, die Schätzungen reichen von 1,2 bis 1,6 Millionen.

Die Deutsche Bundespost hofft, außer den in dieser Karte als im Bau befindlich" bezeichneten bzw. in ihrer Leistung zu erweiternden Sendern noch einige der Planungs-Sender bis Ende 1962 fertigzustellen. Es steht nicht fest, ob das ursprüngliche Ziel — das Netz für das Zweite Fernsehprogramm bis Ende 1962 vollständig zu errichten — erreichbar ist. Gegenwärtig sind 30 UHF-Sender in Betrieb und weitere 23 im Bau. Kanalangaben für diese 23 im Aufbau befindlichen und für die restlichen 36 UHF-Sender waren vom Fernmeldetechnischen Zentralamt noch nicht erhältlich.

Bis zu welchem Zeitpunkt das UHF-Sendernetz für das weitere (Dritte) Fernsehprogramm des "Deutschlandfernsehens" bereitstehen wird, ist nicht erkennbar. Wie wir im Leitartikel des vorliegenden Heftes ausführen, ist die Kapazität der senderbauenden Industrie als auch der Bauwirtschaft begrenzt. Nun scheint diese Industrie als auch der Bauwirtschaft begrenzt. Nun scheint diese Frage auch nicht sehr dringend zu sein, denn der organisatorische Aufbau dieser neuen Fernseh-Anstalt auf Bundesebene mit Sitz in Mainz ist über winzige Anfänge hinaus noch nicht weiter gediehen. Ehe sich dort eine Produktionsgruppe mit ausreichender Studiokapazität und allem technischen Gerät auftut, dürfte das Jahr 1963 längst angebrochen sein. Bis dahin wird die Deutsche Bundespost hoffentlich wenigstens in den Bevölkerungsschwerpunkten weitere UHF-Fernsehsender aufstellen können. Es sei wiederholt: vorgesehen ist, wo immer möglich, die Zusammen-fassung den UHF-Fernsehsender für des Zuseits und des Dritte fassung der UHF-Fernsehsender für das Zweite und das Dritte Programm jeweils in einem Gebäude mit einem Mast, so daß beide Programme für den Teilnehmer aus der gleichen Richtung kommen

#### Details der weiteren UHF-Sender-Planung

Zusätzlich zu den vorstehenden Ausführungen stehen uns aus Anfragen bei allen Oberpostdirektionen noch weitere Einzelheiten zur Verfügung, wenn auch nicht alle angeschriebenen Stellen ausführlich geantwortet haben. Wir entnehmen diesem Material die Informationen über die gegenwärtig noch nicht fertigen Sender, weil diese natürlich am meisten interessieren. Alle Kanalangaben der folgenden Zusammenfassung entsprechen der neuen Zühlung, d. h. alte Kanalnummer + 7; die Leistungen sind in ERP = effektiv abgestrahlte Energie angegeben.

OPD Kiel: Bis Jahresende werden in Betrieb genommen die UHF-Sender Flensburg (Standort Kleinwolstrup), 20 kW; Niebüll (Standort Süderlügum), 2 kW; Schleswig (Standort Güby) 2 kW und Eiderstedt (Standort Garding), 10 kW.

OPD Hamburg: Bis Ende 1962 wird der UHF-Sender Lübeck (Standort Hoher Buchberg, nordwestlich von Ratzeburg) mit 250 kW fertig sein. Über die evtl. Verlegung des UHF-Senders Hamburg-Heiligengeistfeld an einen besser geeigneten Standort ist noch nichts bekannt. Die Leistung wird Anfang 1962 auf 500 kW erhöht werden.

OPD Bremen: Die Planungen sehen einen UHF-Sender in Lingen/Ems und im ostfriesischen Raum mit je 500 kW vor, letzterer wahrscheinlich am Standort des jetzigen Lückenfüllsenders Aurich (Standort Popens bei Egels über Aurich/Ostfr.). Nicht bekannt ist, ob der früher geplant gewesene UHF-Sender Cloppenburg gebaut werden wird.

OPD Münster: UHF-Sender Münster als Mitbenutzer des Standortes des WDR-Senders Münster-Land in den Baumbergen mit folgenden Daten: 250 kW mit Rundstrahlung, Kanal 21, Antennenhöhe 180 m über Erdoberfläche, fertig 1962.



Auch der UHF-Empfang birgt keine Schwierigkeiten, wennbewährte Antennen und Zubehörteile verwendet werden. KATHREIN bietet in seinem umfangreichen Programm alles, was zum preisgünstigen Aufbau hochwertiger Antennen-Anlagen benötigt wird. Aktuelle Antennenbauprobleme werden durch KATHREIN-Neuentwicklungen gelöst: Extrem-Breitbandantenne "Dezi-DURA" für 470 bis 790 MHz · "Dezi-Backfire-Antenne" mit außergewöhnlich hohem Gewinn · FY-Antennenverstärker und FY/FIII-Frequenz-Umsetzer · Ein umfangreiches Programm an Mehrfachweichen · Antennensteckdosen und Empfänger-Anschlußkabel für Central-Anlagen auch mit UHF-Direkt nieder führung. LMKUF-Kombinationsverstärker mit höherer Verstärkung · Bandleitungs-Steckverbindungen mit "Schnellklemmung". Auch diese neuen Antennen und Zubehörteile sind so leistungsfähig, so robust und stabil, wie es KATHREIN-Erzeugnisse seit jeher sind.

#### A.KATHREIN - ROSENHEIM Älteste Spezialfabrik für Antennen und Blitzschutzapparate

#### **REGELBARER SPANNUNGSTEILER RT-1**

Großer Frequenzbereich

Dämpfung definiert und kontinuierlich einstellbar
kleine Grunddämpfung
kleiner Welligkeitsfaktor
einfache Funktionskontrolle mit Gleichstrom
klein und leicht, daher ohne lange Kabelverbindungen
überall zwischenzuschalten
auch als Einbauteiler mit Befestigungsring in

Abb. in natürlicher Größe

Z = 60 Q a<sub>o</sub> = 10 db

RT—1

Nr.
10 940 F

Frequenzbereich 0 ... 3000 MHz

Dämpfungsbereich 10 ... 70 db

lieferbare Wellenwiderstände
50 - 60 - 75 Ohm

Belastbarkeit max. 0.5 W

Geräten und Anlagen verwendbar

#### WANDEL u. GOLTERMANN REUTLINGEN



OPD Düsseldorf: UHF-Sender Wuppertal (Standort Fernmeldeturm), 100 kW in Hauptstrahlrichtung 0° — Nord mit Halbwertsbreite der Abstrahlkeule von  $\pm$  75°, Kanal 22, Antennenhöhe 90 m über Erdoberfläche, fertig im Dezember 1961. Über den UHF-Sender Wesel liegen noch keine Angaben vor.

OPD Dortmund: Keine Angaben über die geplanten UHF-Sender Hochsquerland und Lüdenscheid.

OPD Koblenz: UHF-Sender Koblenz-Bendorf mit 2 kW, fertig bis Ende 1962.

OPD Frankfurt a. M.: Es ist anzunehmen, daß nach dem Kanalwechsel des 500-kW-Senders auf dem Feldberg/Ts. von Kanal 24 in Kanal 34 am 17. Oktober ein zweiter UHF-Sender, ebenfalls mit dem Zweiten Programm, im alten Kanal 24 für einige Zeit weiter arbeiten wird. Sonst sind bis Ende 1962 im Bezirk der OPD Frankfurt a. M. keine weiteren UHF-Sender geplant.

OPD Trier: Voraussichtlich ab 1. November UHF-Sender Haardtkopf (Leihgabe des SWF) in Betrieb mit 200 kW in Kanal 35. Voraussichtlich ab 15. Dezember UHF-Sender Trier (Standort Wasserturm der Stadtwerke) mit 25 kW in Kanal 37 betriebsbereit, später mit 100-m-Mast und 50 kW vom nahezu gleichen Standort aus. Ende 1962 wird der UHF-Sender Scharteberg (bei Kirchberg zwischen Daun und Gerolstein) vom Standort des jetzigen Lückenfüllsenders Scharteberg des SWF aus mit 50 kW in Kanal 23 arbeiten UHF-Sender Saarburg (Standort Gaisberg bei Ockfen) ab Anfang November 1961 mit 20 kW in Kanal 22, endgültige Anlage mit 50 kW im gleichen Kanal Ende 1962 fertig.

OPD Neustadt (Weinstraße): Der UHF-Sender Kaiserslautern mit 25 kW in Kanal 22 und der UHF-Sender Donnersberg (Nähe Kirchheimbolanden) mit 500 kW in Kanal 37 sollen im Laufe des kommenden Jahres eingeschaltet werden.

OPD München: Die zur Zeit arbeitenden UHF-Sender München und Augsburg-Heretsried werden in einiger Zeit auf je 500 kW verstärkt werden. Bis Ende 1962 wird der UHF-Sender Wasserburg (Standort Schnaitsee) mit anfangs 250 kW, später mit 500 kW und Rundstrahlcharakteristik in Betrieb genommen werden.

#### Neue Antennen und Umsetzer

UHF-Sender Münster des WDR (Erstes Programm): Der neue 168 m hohe Mast des Fernsehsenders Münster i. W. in den Baumbergen erhielt seine endgültige Antenne aus 8 × 64 Dipolen für den seit 26. 9. geltenden neuen Kanal 32. Vorgesehen ist eine effektive Rundstrahlleistung von 500 kW.

Neue Umsetzer im SWF-Bereich (Erstes Programm): UHF-Umsetzer Mayen (Jugendherberge) Kanal 30, seit 26. Juli; UHF-Umsetzer Tüllinger Berg im Gebiet Lörrach und Weil, Kanal 26, seit 1. August;

UHF-Umsetzer Wyhlen/Rheintal für Grenzach und Wyhlen, Kanal 25 (alle UHF-Kanalbezeichnungen entsprechen der neuen Zählung).

Fernsehumsetzer Alfeld (NDR): seit dem 25. August für die Versorgung des Leine-Tals zwischen Brüggen und Alfeld. Kanal 9, eff. Strahlungsleistung in Richtung auf Alfeld und das Leinetal ca. 3 W, Muttersender ist Hannover, Kanal 8. K. T.

#### Elektronik-Lehrgänge der Handwerkskammer Lübeck

Lübeck

Die Handwerkskammer Lübeck führt z. Z. wieder eine Reihe von Elektronik-Lehrgängen in verschiedenen norddeutschen Städten durch. Von Mitte Oktober 1961 bis Ende April 1962 stattfin dende Lehrgänge seien nachstehend zusammengestellt. Auskünfte und Anmeldungen: Handwerkskammer, Lübeck, Breite Str. 10/12.

Bausteine der Elektronik: vom 23. bis 27. Oktober 1961

Transistorentechnik: vom 6. bis 16. November 1961 Kiel Kiel Elektronische Anlagen: vom 20. bis 30. November 1961 Itzehoe Elektronische Anlagen: vom 4. bis 14. Dezember 1961 Elmshorn Elektronische Anlagen: vom 8. bis 18. Januar 1962 Kiel Bausteine der Elektronik: vom 22. bis 26. Januar 1962 Elektronische Schaltungen: Kiel vom 29. Januar bis 8. Februar 1962 Neumünster Elektronische Anlagen: vom 12. bis 22. Februar 1962 Elmshorn Bausteine der Elektronik: vom 26. Februar bis 2. März 1962 Elmshorn Elektronische Schaltungen: vom 5. bis 15. März 1962 Elmshorn Elektronische Anlagen: vom 19. bis 29. März 1962 Transistorentechnik: vom 2. bis 12. April 1962 Elmshorn

## Taxliste 1961/62 soeben erschienen!

Sie stellt in ihrer 9., grünen Ausgabe eine wertvolle Kalkulationshilfe für jeden Radio- und Fernsehhändler bei der Inzahlungnahme von Altgeräten dar und hat sich als solche bereits seit acht Jahren bestens bewährt.

Inhalt: Rundfunkempfänger 1949 bis 1960, Reise- und Taschenempfänger 1951 bis 1960, Fernsehempfänger 1954 bis 1960, Tonbandgeräte 1951 bis 1959. Umfang 68 Seiten, **Preis 5.60 DM** zuzügl. Versandkosten.

FRANZIS-VERLAG 13b MÜNCHEN 37 - POSTFACH

#### Fachliteratur

#### Der Tonband-Amateur

Ratgeber für die Praxis mit dem Heimtongerät und für die Schmalfilm-Vertonung. Von Dr.-Ing. Hans Knobloch. 6. Auflage, 51. bis 65. Tausend, 148 Seiten mit 78 Bildern. Preis 7.90 DM. Franzis-Verlag, München.

Der "Tonband-Amateur" ist seit einigen Jahren zu einem ständigen Begleiter der Tonbandfreunde geworden, für die die Beschäftigung mit dem Heimtonbandgerät von reiner Liebhaberei bis zum ernsthaft gepflegten Hobby reicht. Das Tonband-Hobby entwickelte sich bekanntlich zu einem fast wettbewerbsfähigen Sport, ob es nun die Tonjägerei ist – hier kann sich der "Tonbandler" der Jagd auf Geräusche oder der Reportage widmen –, oder die Tonband-Dramaturgie, wo er zuweilen Autor, Regisseur und Akteur in einer Person sein kann. Aber auch in der klanglichen Ausgestaltung fotografierter Erlebnisse – Lichtbild- und Schmalfilmvertonung – eröffnet sich ein weites Betätigungsfeld. Nicht zuletzt beginnt das Tonband heute vielfach den geschriebenen Brief zu ersetzen, und ähnlich wie bei den Kurzwellen-Amateuren hat sich in den letzten Jahren eine weltumspannende Zunft der Tonbandfreunde gebildet, mit Clubs und Gruppen in vielen Ländern.
Der Tonband-Sport stellt den Gerätebesitzer häufig vor Fragen, die ihm die Bedienungsanleitung seines Gerätes nicht immer beantworten kann, sobald sie über Handgriffe und technisches Können des Gerätes hinausgehen. Hier teilt das vorliegende Buch eine große Zahl von Erfahrungen und Kniffen mit, die das Tonband-

Der Tonband-Sport stellt den Gerätebesitzer häufig vor Fragen, die ihm die Bedienungsanleitung seines Gerätes nicht immer beantworten kann, sobald sie über Handgriffe und technisches Können des Gerätes hinausgehen. Hier teilt das vorliegende Buch eine große Zahl von Erfahrungen und Kniffen mit, die das Tonbandgerät aus einem technischen Schallspeicher zu einem virtuos zu handhabenden Instrument der Unterhaltung und der eigenschöpferischen Betätigung werden lassen. Dazu gehören z. B. die Verwendung des Tonbandgerätes als sprechendes Gästebuch, für Geräuschund Überraschungseffekte im häuslichen Kreis und im Vereinsleben, die Tonband-Hörspiele, die Anwendung als Musikpartner oder sogar als Einmann-Chor und Einmann-Orchester. Die notwendigen technischen Kenntnisse vermittelt der Autor in leichtverständlichem Plauderton, der Leser wird in alle Geheimnisse der Gerätebedienung und der Zusammenschaltung mit anderen Geräten (Radio, Schallplatte, Mikrofon und Lautsprecher) sowie des Klebens der Bänder eingeweiht. Die modernste Seite der Tonbandtechnik kommt in den Abschnitten über Stereofonie und über Vierspurtechnik und Playback zu Wort.

Das bereits in der 6. Auflage vorliegende Buch hat mit den wachsenden Möglichkeiten der Heimtonbandgeräte und dem steigenden Bedienungskomfort von Jahr zu Jahr seinen Inhalt verjüngen können. Durch raumsparenden Neusatz konnten bei wiederum ausgeweitetem Text der gewohnte handliche Umfang und damit der Preis erhalten werden. Zum Schluß sei vermerkt, daß viele Tonbandgeräte-Hersteller dieses Buch seit Jahren in ihren Geräte-Bedienerseleiten werden.

dienungsanleitungen empfehlen.

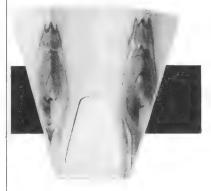
#### Hi-Fi-Technik

Eine kurze Einführung in das Wesen der "Elektroakustik für Anspruchsvolle". Von Dipl.-Ing. Oskar Stürzinger. 70 Seiten mit 32 Abb. Kartoniert 7.80 DM. Franckh'sche Verlagshandlung, Stuttgart.

Nach einem historischen Überblick, in dem der Verfasser darauf hinweist, daß der Ausdruck "Hi Fi" ein in den USA geprägter Werbebegriff ist, den man mit einiger Vorsicht anwenden muß, werden die Grundlagen der Akustik besprochen und die Wirkungsweise von Tonspannungsquellen, Tonspeichern und Verstärkern erklärt. Bei den Schaltungserläuterungen beschränkt sich der Autor auf grundlegende Dinge, er gibt kaum praktische Hinweise für den Nachbau an. Das leicht verständlich geschriebene Buch wendet sich demnach in erster Linie an jene Kreise, die sich eine Anlage aus fertig erhältlichen Bausteinen selbst zusammenstellen möchten und die sich die hierfür erforderlichen allgemeinen Kenntnisse aneignen wollen.

#### Industrielle Elektronik

Von Hans Biefer. 320 Seiten, 343 Bilder. Preis kart. 12.50 sfr. Verlag Aargauer Tagblatt, Aarau/Schweiz.


Ein systematisch aufgebautes Lehrbuch für den Praktiker, das anschaulich die Grundlagen der allgemeinen Elektronik behandelt. Es beginnt mit einem Kapitel über Elektronen und Ionen, beschreibt die Familien der Elektronenröhren und Halbleiter, um dann zu den elektronischen Grundschaltungen, wie Gleichrichter, Verstärker, RC-Schaltungen, und zu den Grundbegriffen der Regelungstechnik überzugehen. Das Schlußkapitel bringt zahlreiche Schaltungsbeispiele von elektronischen Geräten und Anlagen. Bemessungsbeispiele und Überschlagsrechnungen erhöhen den Wert des Buches für den Lernenden.

#### Halbleiter

Von Horst Teichmann. Band 21 der Hochschultaschenbücher. 136 Seiten, 55 Bilder. Kart. 3.80 DM. Bibliographisches Institut, Mannheim.

Entsprechend dem Zweck dieser Buchreihe werden vorwiegend die Grundlagen der Halbleiterphysik, also das Elektronen-Bändermodell und das Verhalten von Grenzschichten, behandelt. Das Buch ist daher vorzugsweise zur Ausbildung und Fortbildung nach der theoretisch-wissenschaftlichen Seite hin geeignet.

## Lorenz-Lautsprecher



#### Schallecke SZ II

Der ideale Hi-Fi-Raumtöner DM 86,50\*



#### Phoni

der vielseitig verwendbare Kleinlautsprecher DM 19,50\*

Hi-Fi-

Lautsprecher-Baukasten

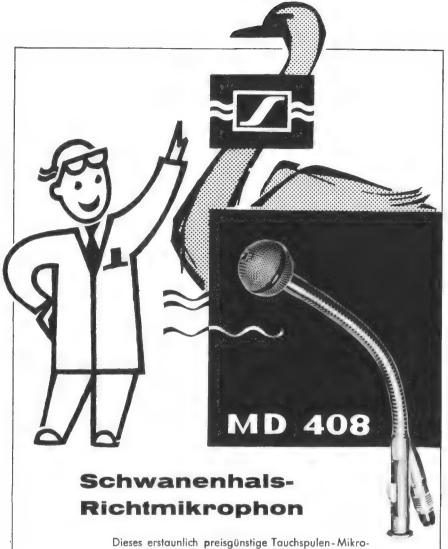
#### enthaltend:

DM 98,-\*

1 Tieftonlautsprecher1 Mitteltonlautsprecher2 Dyn. Hochtonlautsprecher mit Zubehör und Einbauanleitung



### Lautsprecher für Einbauzwecke


Rundausführungen von 45 bis 300 mm  $\phi$  Ovaltypen von 36 x 102 bis 180 x 260 mm Flachlautsprecher in rund und oval

Verlangen Sie bitte Prospekte

\* unverbindlicher Richtpreis für den Handel



Standard Elektrik Lorenz AG · Stuttgart



Dieses erstaunlich preisgünstige Tauchspulen-Mikrophon für hochwertige Aufnahme- und Wiedergabe-Anlagen in akustisch ungünstigen Räumen ist Spitzenklasse. Seinen Namen verdankt dieses elegante und dennoch unauffällige Mikrophon dem Schwanenhals, mit dem es fest verbunden ist. Die Gesamt-Konzeption des MD 408, das zusätzlich mit einem Schalter ausgerüstet wurde, macht es zu einem universellen Richtmikrophon hoher Klangtreue für

Musikliebhaber und Amateure Redner und Werbewagen Ruf- und Kommandoanlagen Sänger und Tanzkapellen Rundfunk und Fernsehen

Die technischen Daten verraten dem Fachmann Hi-Fi-Qualität. Übertragungsbereich 100-14 000 Hz bei leicht ansteigendem außerordentlich gleichmäßig verlaufendem Frequenzgang. Gute Richtwirkung mit mehr als 12 dB Auslöschung. Empfindlichkeit ca. 0,15 mV/µbar. Innenwiderstand ca. 200 Ohm.



#### Aus dem FUNKSCHAU-Lexikon

#### CERENKOV-STRAHLUNG

Dringt ein sehr energiereiches Elementarteilchen, z. B. ein Elektron mit nahezu Lichtgeschwindigkeit in optisch durchsichtiges Material ein, so kann es dort eine elektromagnetische Welle auslösen. Voraussetzung hierfür ist, daß die Teilchengeschwindigkeit v größer ist als die Lichtgeschwindigkeit u=c/n in diesem Medium. Die elektromagnetische Energie tritt dann unter einem ganz bestimmten Winkel  $\vartheta$  aus dem betreffenden Stoff aus. Dieser errechnet sich zu

$$\cos\vartheta = \frac{c}{nv}$$

Der Winkel † ist also nur abhängig von dem Brechungsindex n und der Teilchengeschwindigkeit v, d. h. bei bekanntem Brechungsindex kann die Geschwindigkeit und damit auch die Energie des Elementarteilchens durch Winkelmessung ermittelt werden.

Die soeben beschriebenen Tatsachen waren in der Physik bereits längere Zeit bekannt, wurden aber 1934 von P. A. Cerenkoverstmals näher untersucht. Obgleich die Intensität der Cerenkov-Strahlung sehr gering ist, gelang es, die von einem einzelnen Teilchen ausgehende Strahlung mit Hilfe von Fotozellen - Sekundärelektronen - Vervielfachern zu messen.

Vgl. hierzu: Die Cerenkov-Strahlung, ELEKTRONIK 1956, Heft 3, Seite 57 sowie: Rückblicke und Ausblicke in der Mikrowellentechnik, FUNKSCHAU 1957, Heft 1, Seite 5, Bild 5.

#### **Zitate**

Wir Kellerkinder... (Stoßseufzer einiger Delegierten auf der Stockholmer VHF/UHF-Konferenz 1961, nach vier Wochen Tätigkeit in den unterirdischen Konferenzräumen des Hotel Malmen).

Zum Empfang farbiger Fernsehsendungen brauchen die jetzigen Empfangsgeräte nicht ausgetauscht zu werden. Im Gegensatz zum kostspieligen amerikanischen Verfahren ist nach den vorliegenden Patenten lediglich der Einbau von zwei Zusatzelementen in die Kameras (im Sender) und in die Empfängerröhre erforderlich. Die Fernsehgerätebesitzer wechseln also lediglich die Bildröhren ihrer Empfänger aus, und zwar zu einem bescheidenen Aufpreis. Mit dieser Röhre können die bisherigen Schwarz/Weiß-Sendungen auch empfangen werden (Aus dem Prospekt der Penombra AG, Genf, das zum Kauf von spekulativen Aktien der englischen Farbfernseh-Bildröhrengesellschaft Telycolour nach dem "optischen Additiv-System" auffordert...).

Man hat diese Messe einmal einen Baukasten des beratenden Herstellers und Ingenieurs genannt, ein Panorama der wesntlichen dynamischen Funktionen im Betrieb: des Antriebs, des Messens, des Steuerns, der Anwendung elektrischer Energie, der Elektronik des Bauens und des technischen Konsums—kurzum, vieler wichtiger Bausteine der wirtschaftlichen Entwicklung (Dr. Ing. E. h. H. G. Sohl, Vizepräsident des Bundesverbandes der Deutschen Industrie, zur Eröffnung der Hannover-Messe 1961).

Wir in der BBC sind bereit und auch sehr interessiert daran, mit einem kleinen, vollkompatiblen Farbfernseh-Programmbetrieb innerhalb unseres jetzigen Fernsehdienstes im Bereich I mit 405 Zeilen zu beginnen, ohne auf eine Entscheidung zu warten, ob und wann etwa im Bereich IV/V mit 625 Zeilen begonnen wird (H. Carleton Green, Generaldirektor der BBC, London, in einer Versammlung von Rundfunk- und Fernseh-Fachhändlern).

Seite

Inhalt:



#### FACHZEITSCHRIFT FÜR FUNKTECHNIKER

### Stockholmer Plan · Termine für den UHF-Senderbau Münzfernsehen · Jedermann-Funksprechverkehr

#### Fragen an den Bundespostminister

Vor zweieinhalb Jahren sprachen FUNKSCHAU und fff-press, Hamburg, gemeinsam schon einmal mit Bundespostminister Stücklen — damals über den Ausbau des Sendernetzes für das Zweite Fernsehen. Im August ließen wir uns wiederum aktuelle Fragen beantworten. Ihnen kommt besondere Bedeutung zu, weil das Karlsruher Fernsehurteil vom 28. Februar der Deutschen Bundespost die Souveränität in allen sendetechnischen Fragen bestätigt hat. Ihre Zuständigkeit für die Programmübermittlung mit Richtfunk und Kabel war ohnehin niemals bestritten.

Zu den Vorwürfen, die Bundespost habe in Stockholm den ursprünglichen bundesdeutschen UHF-Frequenzplan nicht durchsetzen können, erklärt uns der Bundespostminister, daß die eigenen Wünsche mit den Frequenzforderungen der westlichen und der östlichen Länder koordiniert werden mußten; die Kanäle für die Lückenfüllsender der Rundfunkanstalten hatten ohnehin nur vorläufigen Charakter. Eine Nicht-Anerkennung des Stockholmer VHF/UHF-Planes würde im Effekt durch internationale rechtliche Maßnahmen gegen das Bundesgebiet zum größeren Nachteil für die Fernsehteilnehmer ausschlagen als sie die jetzige Kanalumstellung mit sich bringt. Es ist daher unwahrscheinlich, daß die Deutsche Bundespost den Stockholmer Vereinbarungen ihre förmliche Zustimmung verweigert.

Wir fragten Bundespostminister Stücklen, warum die Bundespost in Stockholm keine Kanalzuteilungen im Bereich 790 bis 960 MHz verlangt hat; einige Länder beantragten (und erhielten) Zuweisungen in den Kanälen bis 854 MHz. Die Antwort: Auf Grund berechtigter Anforderungen anderer Bedarfsträger in der Bundesrepublik muß die Deutsche Bundespost den Frequenzbereich 790 bis 960 MHz für den festen Funkdienst freihalten.

Werden wir den Bereich 100 bis 104 MHz für den Ton-Rundfunk freibekommen? Der Weltnachrichtenvertrag von Genf (1959) gibt uns die Möglichkeit dazu. Antwort: Hier arbeitet z. Z. der bewegliche Funkdienst. Ob und wann dieser Bereich für den Rundfunk freigemacht werden kann, läßt sich z. Z. noch nicht entscheiden.

Wir vermuten, daß man ihn unter Umständen einem später zu schaffenden privaten UKW-Werberundfunk zuteilen wird... zumindest ist diese Möglichkeit nicht ausgeschlossen.

Wann ist mit Verbesserung der Richtfunk-Strecken nach und von Berlin zu rechnen? Antwort: Bereits 1960 wurde in Höhbeck eine im UHF-Bereich arbeitende Richtfunkstrecke nach Berlin gebaut und in diesem Jahr in Betrieb genommen. Weitere Strecken werden folgen. Gemeint ist offenbar die Anlage vom Typ AMTV 500; sie arbeitet mit einem 20-kW-UHF-Sender und sehr hoher Antennenbündelung, empfangsseitig werden kommerzielle Fernsehempfänger und Richtempfangsantennen benutzt.

Können Termine für die Beendigung des UHF-Senderbaues für das Zweite Programm (vorgesehen sind jetzt mehr als 82 UHF-Sender) und für das Sendernetz eines Dritten Programmes — gestaltet vom "Deutschlandfernsehen" in Mainz — genannt werden? Antwort: Ein weiteres Sendernetz mit den zugehörigen Richtfunkstrecken verlangt nach Abschluß der Vorplanungen eine Zeit von etwa zwei Jahren. Beschaffungsschwierigkeiten für hochwertige Mikrowellenbauteile und die begrenzte Lieferkapazität der Industrie lassen es nicht zu, daß dieser Zeitraum unterschritten wird. Auch kann die Zahl der Montage- und Einschalttrupps für Aufbau und Einmessen nicht beliebig erhöht werden. Begrenzte Kapazität der Bauwirtschaft und Witterungseinflüsse sind ebenfalls zu berücksichtigen.

Bundespostminister Stücklen teilt mit, daß die Senderplanung sich für das Dritte Programm im wesentlichen auf die bereits benutzten Standorte für das Zweite Programm stützt; dort werden die Neubauten entsprechend bemessen. Das würde für den Fernsehteilnehmer Empfang beider Programme aus der gleichen Richtung bedeuten, so daß Breitbandempfangsantennen für alle 40 Kanäle offenbar am günstigsten sind.

Zum Münzfernsehen über Kabel: Die vorhandenen Kabelnetze sind für die Übermittlung von Gesprächen, nicht aber für die Übertragung von Fernsehsignalen eingerichtet. Folglich müßte für das Münz-Fernsehen eine neue Technik geschaffen werden, die sich ohne Beeinträchtigung der übrigen Dienste einfügen lößt und zugleich wirtschaftliche Forderungen erfüllt. Die Entwicklungen sind sehr zeitraubend und kostspielig. Bestimmte Voruntersuchungen werden jedoch schon angestellt, aber noch kann nichts über eine günstige Lösung des angesprochenen Problems gesagt werden, auch lassen sich noch keine weiteren Maßnahmen einleiten.

Zum Jedermann-Funksprechverkehr: Im Bundesgebiet besteht ein engmaschiges Fernmeldenetz, dessen sich jedermann bedienen kann. Für mobile Zwecke gibt es hier den öffentlichen und den nichtöffentlichen beweglichen Landfunkdienst (im UKW-Bereich) und den Internationalen Rheinfunkdienst. Diese Dienste müssen laufend erweitert werden, wofür alle verfügbaren Frequenzen benötigt werden. Eine zwingende Notwendigkeit für die Zulassung von Jedermann-Sprechfunkgeräten ist nicht zu erkennen. Es ist daher z. Z. nicht beabsichtigt, den Betrieb derartiger Funkanlagen zu genehmigen.

Wir fügen von uns aus hinzu, daß im Anschluß an die USA und Schweden im kommenden Jahr auch Kanada und Japan den Jedermann-Dienst einführen werden.

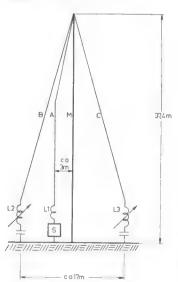
Die Äußerungen des Bundespostministers zum Deutschlandfunk auf 1538 kHz bzw. 151 kHz decken sich im wesentlichen mit unserer Meldung in Heft 16/1961 (Kurz und Ultrakurz).

| Leitartikel                                                                                        |            |  |  |  |  |
|----------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Stockholmer Plan • Termine für den<br>UHF-Senderbau • Münzfernsehen<br>Jedermann-Funksprechverkehr | 517        |  |  |  |  |
| Das Neueste                                                                                        |            |  |  |  |  |
| Mittelwellensender auf See                                                                         | 518        |  |  |  |  |
| Transistor-Impulsgeber für Herzkranke                                                              | 518        |  |  |  |  |
| Kombinierte VHF/UHF-Einbauantenne                                                                  | 518        |  |  |  |  |
| Fernsehgeräte ohne Anheizzeit Aus der Normungsarbeit                                               | 518<br>518 |  |  |  |  |
| Fernsehtechnik                                                                                     |            |  |  |  |  |
| Schall-, Licht- und Röntgenstrahlung<br>beim Fernsehen                                             | 519        |  |  |  |  |
| Service-Technik                                                                                    |            |  |  |  |  |
| Meßpunktschablonen für gedruckte<br>Schaltungen                                                    | 522        |  |  |  |  |
| Für den jungen Funktechniker                                                                       |            |  |  |  |  |
| Einführung in die Feinmeßtechnik, 1. Teil                                                          | 523        |  |  |  |  |
| Aus der Welt des Funkamateurs                                                                      |            |  |  |  |  |
| Mobil-Portabel-Station für fünf                                                                    | 507        |  |  |  |  |
| Amateurbänder, Teil II                                                                             | 52/        |  |  |  |  |
| Neue Hf-Bausteine                                                                                  | 501        |  |  |  |  |
| Breitband-Zf-Verstärker für                                                                        |            |  |  |  |  |
| Multiplex-Hf-Stereofonie                                                                           |            |  |  |  |  |
| Thermostate und Schwingquarze Kleindrehkondensatoren                                               |            |  |  |  |  |
| Gerätebericht                                                                                      | 002        |  |  |  |  |
| Musiktruhe mit Nachhall-Einrichtung                                                                |            |  |  |  |  |
| Philips-Stella 612 Reverbeo                                                                        | 533        |  |  |  |  |
| Schaltungssammlung                                                                                 |            |  |  |  |  |
| Philips-Stella 612 Reverbeo                                                                        | 533        |  |  |  |  |
| Fernsehempfänger                                                                                   |            |  |  |  |  |
| Fernsehteil sperrt-AM-Rundfunk-<br>empfang                                                         | 534        |  |  |  |  |
| Fernseh-Service                                                                                    |            |  |  |  |  |
| Zu geringe Bildhöhe durch Eigen-                                                                   | 505        |  |  |  |  |
| schwingungen der Vertikal-Endstufe<br>Vertikaler Balken im Bild                                    | 535<br>535 |  |  |  |  |
| Mangelnde Bildhelligkeit                                                                           |            |  |  |  |  |
| Schlechte Bild- und Zeilen-                                                                        |            |  |  |  |  |
| synchronisation                                                                                    | 535        |  |  |  |  |
| Immer wieder: MangeInde Zeilensynchronisation                                                      | 535        |  |  |  |  |
| Helligkeit geht zurück, gleichzeitig<br>Lupeneffekt                                                |            |  |  |  |  |
| Lopelierieri                                                                                       | 300        |  |  |  |  |
| RUBRIKEN:                                                                                          |            |  |  |  |  |
| Kurz und Ultrakurz,<br>Nachrichten*1103, *1                                                        | 104        |  |  |  |  |
| Von Sendern und Frequenzen *1102, *1105, *1                                                        | 106        |  |  |  |  |
| Fachliteratur *1107,                                                                               |            |  |  |  |  |
| Aus dem FUNKSCHAU-Lexikon, Zitate*1                                                                | 108        |  |  |  |  |
| Persönliches                                                                                       |            |  |  |  |  |
| BEILAGEN:                                                                                          |            |  |  |  |  |
| Funktechnische Arbeitsblätter                                                                      |            |  |  |  |  |

Ma 41, Blatt 1 und 2: Schallfeldgrößen,

bedeutet Anzeigenseite (kleine schräge Zahlen)

2. Ausgabe


## DAS NEUESTE aus Radio- und Fernsehtechnik

#### Mittelwellensender auf See

Seit dem 8. März liegt etwa 40 km südsüdöstlich von Stockholm außerhalb der Dreimeilen-Zone das 274 BRT große Küstenfahrzeug Bon Jour (Bild 1). Es trägt an Bord einen demnächst um das Doppelte verstärkten 10-kW-Mittelwellensender und verbreitet pausenlos während 24 Stunden am Tage leichte Musik mit Reklamedurchsagen. Dieser Werbesender mußte auf See verankert werden, weil der schwedische Staat lediglich der Gesellschaft Sveriges Radio die Genehmigung für Rundfunk- und Fernsehsendungen - alle ohne Werbung - erteilt hat. Die Verwaltung des sich mit Radio Nord meldenden Senders ist allerdings in Stockholm; in den Studios wird das gesamte Programm mit Ausnahme der Nachrichtensendungen auf Band genommen und mit dem Hubschrauber an Bord gebracht.

Radio Nord gibt an, auf 606 kHz = 495 m zu arbeiten, in Wirklichkeit wird die Frequenz 602 kHz benutzt. Diese Frequenz gehört Lyon, sie wird von Radio Nord widerrechtlich in Anspruch genommen.

Das kleine Schiff kann keine hohe Antenne tragen. Die benutzte Antenne vom Typ folded unipole (Bild 2) hat nur eine Länge von 0,07  $\lambda$  und wird von dem 37 m hohen vorderen Metallmast getragen. Die Strom- und Spannungsverteilung ist sehr unregelmäßig und liegt zwischen 15 und 80 A bzw. 0,7 und 15 kV. In Bild 2 ist der Sender mit S bezeichnet; er speist über die Verlängerungsspule L1 die Antenne A, B und C, getragen vom ebenfalls gespeisten Mast. Die Variometer L 2 und L 3 kompensieren den kapazitiven Blindwiderstand der beiden Antennenteile B und C. Die Anpassungsimpedanz liegt bei 50 Ω und der Wirkungsgrad wird mit 40 % genannt. Bild 3 zeigt die als Folge der geringen Antennenhöhe und des niedrigen Strahlungswiderstandes sehr schmalbandige Resonanzkurve (für 606 kHz berechnet). Der geringe Strahlungswiderstand muß mit relativ hochinduktiven Elementen kompensiert werden. Bezogen auf 3 dB Abfall ist die Bandbreite nur 2 × 3 kHz. 9000 Hz sind bereits mit -9 dB abgesenkt, so daß man von Hi-Fi-Oualität nicht sprechen kann. Die Reichweite des Senders ist begrenzt; in Stockholm werden durchweg nur 3 mV/m gemessen. Die 100-μV/m-Linie liegt bei Tage in rd. 300 km Abstand, nachts beträgt die echte Reichweite 60...100 km.



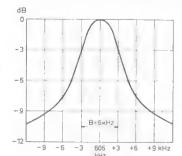
Herzkranke dig zu Bett liegen muß.

#### Kombinierte VHF/UHF-Einbauantenne

Links: Bild 2. Skizze des Antennen-

aufbaus

Rechts: Bild 3.


Resonanzkurve der

Q = 100

mit

Sendeantenne

Alle Graetz-Fernsehempfänger des Jahrganges 1961/62 enthalten eine interessante Einbauantenne aus Metallfolie, die gleichzeitig für VHF und UHF wirksam ist. Wie das Bild zeigt, wird hierbei ein kleiner Schleifendipol für UHF mit einem größeren Einfachdipol für Bereich III zu einer Einheit






Bild 1. Motorschiff Bon Jour mit dem Sender von Radio Nord an Bord (602 kHz)

## Transistor-Impulsgeber für

Der 80jährige Schwede C. S. Broden bekam im Universitätskrankenhaus von Uppsala eine kleine Plastikdose in die Brust direkt unterhalb des Herzens einoperiert. In dem Behälter befindet sich ein Impulsgeber mit Transistoren OC 440 bzw. OC 445 der Firma Intermetall. Dieser Impulsgeber dient zur Unterstützung des Herzmuskels, d. h. die Impulse regen die Herztätigkeit derart an, daß der alte Mann nicht, wie es seinem Allgemeinbefinden entspräche, stän-

Ähnliche Anregungsgeräte mit äußerlicher Leistungszuführung und in größerer Ausführung gibt es schon seit längerer Zeit; neu ist hier das direkte Einführen des Gerätes mit Batterie in den Körper des Patienten, der damit volle Bewegungsfreiheit behält. Nach zwei Jahren allerdings muß ein weiterer Eingriff vorgenommen werden, um eine neue Batterie einzusetzen. Wie Dozent V. O. Björk, der der die Operation vorgenommen hat, mitteilt, werden in den USA etwa 25 ähnliche Geräte bereits verwendet; auch in Stockholm und Malmö wurden solche Operationen ausgeführt.

# 8

Die Form der kombinierten VHF/UHF-Einbauantenne in Graetz-Fernsehempfängern

kombiniert. Obgleich diese Anordnung zunächst etwas als Spielerei erscheint und wahrscheinlich nicht den strengen theoretischen Anpassungsbedingungen entspricht, ist es doch sehr angenehm, beim Aufstellen und Einschalten eines Gerätes in Sender-nähe zunächst einmal eine Empfangsmöglichkeit zu haben, bevor die ordnungsgemäße Außenantenne fertiggestellt ist.

#### Fernsehgeräte ohne Anheizzeit

Die amerikanische Westinghouse Electric Corp. bringt neue Fernsehempfänger heraus, die nach Druck auf die Einschalttaste sofort mit Bild und Ton "da" sind, also keine Anheizzeit brauchen. Die Röhren im Gerät sind ständig mit der halben Heizspannung vorgewärmt; die dafür nötige Leistung ist gering. Nach Angaben von Westinghouse soll durch Verhindern der Abkühlung der Katoden nach Ausschalten des Empfängers die Röhrenlebensdauer erhöht werden (Das wird von anderen Röhrenspezialisten energisch bestritten! Zwar kann man bei modernen Röhren die Bildung einer gefährlichen Zwischenschicht auf der Katode bei Wartebetrieb, d. h. bei angelegter Heizspannung und abgeschalteter Anodenspannung, vermeiden, aber eine Lebensdauererhöhung ist nicht möglich).

#### Aus der Normungsarbeit

#### Farbkennzeichnungen

Da bisweilen auch der Konstrukteur von fernmeldetechnischen und elektronischen Geräten mit Farbkennzeichnungen zu tun hat, z. B. bei der Bestellung von farbigen isolierten Drähten oder Gehäuselackierungen oder auch für den Fall eines künftigen Farbfernsehens, sei hier auf ein exaktes Hilfsmittel zum Festlegen von Farbtönen aufmerksam gemacht. Die DIN-Far-benkarte 6164 erläutert das Prinzip der Farbkennzeichnung; die zugehörigen Beiblätter 1 bis 25 sind in Felder unterteilt, in die je ein 20 × 28 mm großes Farbmusterkärtchen eingesteckt ist. Die Farbtöne sind nach "Genauigkeitsstufe 1" eingemessen, und die Maßhaltigkeit der Muster wird von der Bundesanstalt für Materialprüfung in Berlin überwacht.

Jedes Beiblatt enthält die Varianten eines Farbtones. Eine Tabelle auf der Innenseite des Deckblattes bringt die Maßzahlen der Farben im internationalen Normalsystem und auch die Maßzahlen für das in den USA sehr verbreitete Farbsystem Munsell und für das früher in Deutschland benutzte Ostwaldsche Farbsystem. Dadurch sind die Beiblätter gleichzeitig ein Hilfsmittel, wenn gelegentlich in Liefervorschriften die Farben im Munsell- oder Ostwald-System angegeben sind.

Die hohe Genauigkeit für das Drucken der Farbmuster bedingt allerdings einen Preis von 38.60 DM für ein einziges Beiblatt. Einen anschaulichen Prospekt über die DIN-Farbenkarte und die Beiblätter erhält man vom Beuth-Vertrieb GmbH. Berlin W 15 - Köln - Frankfurt am Main, von dem auch die Farbenkarten selbst bezogen werden können.

#### Berichtigung

#### Ingenieur-Seiten Kleintransformatoren mit MD-Kernblechen FUNKSCHAU 1961, Heft 15, Seite 393

Zu dieser Arbeit von Helmut Hesselbach ist noch zu erwähnen, daß die in diesem Aufsatz beschriebenen MD-Transformatoren mit Spezial-Kernblechen auf einer Entwicklung der Firma Siemens & Halske AG, München, beruhen,

## Schall-, Licht- und Röntgenstrahlung beim Fernsehen

Das Thema Fernsehen ist häufig ein dankbares Kapitel für die Presse. Man spricht dann ein geneigtes Publikum an, das durch Artikel über Atome und Reaktoren, über Gamma- und Röntgenstrahlen ohnehin schon verwirrt ist. Oft genug werden dann dem Berichterstatter unter "Eingesandt" noch seine Gespenster bestätigt. So in einem Falle in der Provinz, bei dem ein hochbetagter Wünschelrutengänger (84) einigen Frauen wieder zum ersehnten Nachtschlafe verhelfen konnte. "Schuld" hatte eine schlecht geerdete Fernsehantenne auf einem Nachbarhause.

Gewiß, der Fernsehempfang ist mit technischen Begleiterscheinungen verbunden, wir sollten auch bei irgendwelchen unangenehmen Empfindungen die Ursachen hierfür kennenlernen – um so leichter sind sie auch abzustellen.

1. Als Erstes wollen wir von der Schallstrahlung berichten, und zwar nicht von der gewollten und erwünschten Abstrahlung von Sprache und Musik durch die Lautsprecher der Fernsehgeräte, sondern von dem hohen Pfeifton, der bei der Erzeugung der Zeilenfrequenz auftritt.

Das deutsche Fernsehen sendet nach der CCIR-Norm 25 Vollbilder in der Sekunde und je Vollbild 625 Zeilen. Ein Vollbild wird in zwei Halbbilder zu je 312,5 Zeilen zeregt. Man kann dem Auge durch die beiden ineinander verschachtelten Halbbilder 50 Bilder je Sekunde vortäuschen. Hierdurch wird das sonst auftretende Flimmern unterdrückt. Die Anzahl der Vollbilder bezeichnet man beim Fernsehen als Bildfrequenz. Sie ist bei den meisten Fernsehnormen dieselbe und weicht nur bei der amerikanischen Norm ab.

Jeder Fernsehsender erzeugt Zeilen- und Bildfrequenz gleichzeitig und in Abhängigkeit voneinander durch eine besondere elektronische Teilung der frequenzstabil hergestellten Zeilenfrequenz. Bei dieser Teilung wählt man aus technischen Gründen nur ungerade Zahlen und geht ungern über die "7" hinaus. Durch eine viermal hintereinander mit der Zahl "5" durchgeführte Teilung erhalten wir aus unserer Zeilenfrequenz 15 625 Hertz die Bildfrequenz 25 Hertz (bitte nachrechnen: 15 625 : 5 · 5 · 5 · 5 = 15 625 : 625 = 25). Die Zahl 625 ist dabei die Zeilenzahl. Die Gegenprobe ergibt wieder die Zeilenfrequenz (15 625) als Produkt von Zeilenzahl (625) und Bildfrequenz (25).

Die Forderungen nach guter Bildauflösung können mit den 625 Zeilen der CCIR-Norm (und auch mit den 525 Zeilen der US-Norm) gut erfüllt werden. Bei der französischen Norm (819 Zeilen) schießt man über das Ziel hinaus; man glaubte seinerzeit, das Fernsehen fände vorwiegend in Kinos als Großprojektion statt. Die englische Norm jedoch (nur 405 Zeilen) stellt die untere technische Grenze dar und ist mit der Grund dafür, daß in Großbritannien die Geräte mit 43-cm-Bildschirmen lange Zeit besonders stark vertreten waren und jetzt die Umstellung auf 625 Zeilen spruchreif geworden ist. Eine unserer CCIR-Norm entsprechende Auflösung kann hier nur mit 36-cm-Bildröhren erzielt werden.

Aus untenstehender *Tabelle* ist der zahlenmäßige Zusammenhang zwischen Zeilen-Fernsehnormen ersichtlich.

Manche Menschen hören die Zeilenfrequenz nach dem Einschalten des Fernsehgerätes als hohen Pfeifton, vor allem, wenn der Lautstärkeregler ganz zurückgedreht ist und es im Raum ruhig ist. Nicht jeder kann jedoch diesen Ton wahrnehmen.

Vorzugsweise junge Menschen haben ein sehr feines Gehör. Mit Beendigung des Wachstums aber läßt die Hörfähigkeit bereits wieder nach; die Gehörzellen verkalken und verhärten allmählich.

Die höchste Empfindlichkeit des menschlichen Ohres liegt zwischen 1000 und 2000

| Uber<br>19 000 Hz                     | Ultraschall | unhörbar |
|---------------------------------------|-------------|----------|
| Zwischen<br>19 000 Hz<br>und<br>16 Hz | Schall      | hörbar   |
| Unter<br>16 Hz                        | Infraschall | unhörbar |

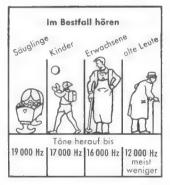



Bild 1. Frequenzbereich der Schallarten; darunter Hörbereich der Altersgruppen

Hertz. Die Grenze der Wahrnehmung dagegen liegt bei etwa 16 Hertz nach unten und rund 19 000 Hertz nach oben (Bild 1). Was wir einfach das "Ohr" nennen, ist in Wirklichkeit ein sehr kompliziertes Gebilde. Daß das mittlere Ohr aus den drei Gehörknöcheln Hammer, Amboß und Steigbügel besteht, ist schon, eine alte Schulweisheit.

#### Zeilenzahl und Normung

| Zeilenzahl                      | als Produkt au<br>den Zahlen                           | Bildfrequenz<br>Hertz            | Zeilenfrequenz<br>Hertz                        | Norm                                                                                          |
|---------------------------------|--------------------------------------------------------|----------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 405<br>441<br>525<br>625<br>819 | 3·3·3·3·5<br>3·3·7·7<br>3·5·5·7<br>5·5·5·5<br>3·3·7·13 | 25<br>25<br>25<br>25<br>25<br>30 | 10 125<br>11 025<br>15 570<br>15 625<br>20 475 | englische Norm<br>deutsche<br>Vorkriegs-Norm<br>USA-Norm<br>CCIR-Norm<br>französische<br>Norm |
|                                 |                                                        |                                  |                                                |                                                                                               |

Die eigentliche "technische Einrichtung", wenn man so sagen darf, sitzt jedoch im inneren Ohr. Dieses erhält die Schallschwingungen von der Kette der drei Gehörknöchelchen durch ein kleines ovales Fenster zugeführt.

Erst dort erregen die Schwingungen ein kleines flüssigkeitsgefülltes schneckenförmiges Gebilde. Dieses enthält in seinem Inneren eine feine Membrane, die sogenannte Basilar-Membrane. Der Ort größter Erregung der Membrane ist von der Tonhöhe abhängig. Dadurch können wir hohe und tiefe Töne voneinander unterscheiden. Hören Sie also die Zeilenfrequenz nicht oder nicht mehr, so brauchten Sie eigentlich eine neue Basilar-Membrane. Doch Spaß beiseite: ein Hund hört weit über 20 000 Hertz hinauf. Daher kann man ihn mit einer für Menschenohren unhörbaren Signalpfeife rufen. Besonders gute Hundepfeifen sind sogar in der Tonhöhe einstellbar, so daß jeder Hund seine "eigene Frequenz" hat und bis auf etwa 200 Meter Entfernung "drahtlos" gerufen werden kann.

Die "Pfeife" beim Fernsehgerät arbeitet nun ungewollt durch die kräftigen Schwingungen der Zeilen-Endröhre, die man einem 10-Watt-Verstärker gleichsetzen kann. Die Schwingungen der Zeilen-Endröhre regen den Zeilentransformator zu mechanischen Schwingungen an, die oft hörbar werden. Diese mechanischen Schwingungen lassen selbst einen kleinen Klingeltransformator "brummen" (weil dort mit 50 Hertz gespeist wird), wie man leicht feststellen kann, wenn man sein Ohr an das Gehäuse dieses Klingeltransformators legt. Die Lautstärke der mechanischen Schwingungen ist von den Wicklungen des Transformators und ihrer Befestigung abhängig.

In vielen Fernsehgeräten wird die Zeilenendröhre von einem Sinus-Oszillator gesteuert. Dessen Schwingungen setzen nach dem Einschalten des Gerätes etwas früher ein als die Schwingungen der Zeilen-Endröhre und betragen nur etwa 1/50 der Intensität der Schwingungen der Zeilen-Endröhre. Trotzdem gibt es einige wenige Menschen, die selbst das noch hören können — sie könnten als Ermittler von Schwarzsehern bei der Post arbeiten!

Nicht immer hört der Mensch gleich gut. Die Hörschwelle schwankt mit der Tageszeit und dem körperlichen Allgemeinbefinden. Musikinstrumente, die mit ihren Höhen in den Bereich der Zeilenfrequenz fallen, sind Cello, Violine, Saxophon, Klarinette und Flöte, aber auch Schlagbecken und kleine Trommeln. Schließlich dringen auch Alltagsgeräusche, wie Schritte, Händeklatschen und Schlüsselklirren in diesen Bereich vor. Wenn Sie die Zeilenfrequenz hören können, dann ist dies ein Zeichen, daß Sie biologisch noch sehr jung sind, worüber Sie sich eigentlich freuen sollten...

Nur Ihrem gefiederten Freund und Hausgenossen in seinem Käfig sollten Sie es ersparen, in unmittelbarer Nähe des Fernsehgerätes zu weilen. Es wäre gedankenlos, den Käfig auf das Fernsehgerät zu stellen. Pflanzen dagegen sind gegen die Zeilenfrequenz unempfindlich, nehmen aber das

öftere Ahdunkeln zum Fernsehen am Tage und das vom Bildschirm ausgehende Licht gelegentlich übel. Man sollte daran denken, daß dann nicht "das Fernsehgerät" die Schuld hat, sondern die veränderten Lebensbedingungen schädlich sein können.

2. Die Lichtstrahlung des Fernsehgerätes kann beim Betrachten zu Beschwerden führen. Mit der rasch wachsenden Zahl von Fernsehteilnehmern in allen Kulturländern mehren sich auch die Klagen, daß empfindliche Personen bei längerem Betrachten des Fernsehprogrammes Kopfschmerzen, Augenflimmern, Sehstörungen, leichte Ermüdbarkeit, ja sogar Bindehautentzündung bekommen. Es ist dies eine Erscheinung, die fast überall beobachtet wurde und zuerst in der medizinischen Literatur in den USA beschrieben wurde - dort hat sich ja das Fernsehen viel früher verbreitet als bei uns. Den mit diesen Fragen beschäftigten Augenärzten, Physiologen und Fernsehtechnikern ist es jedoch gelungen, den wesentlichen Teil der Ursachen aufzufinden und Maßnahmen zu ihrer Behebung zu treffen. In der Bundesrepublik wurden diese Probleme eingehend von Professor Dr. phil. Dr. med. Schober, Vorstand des Institutes für medizinische Optik der Universität München, untersucht.

Zunächst wäre der beim Fernsehen erforderliche Betrachtungsabstand von 2,5 bis 4 Metern als Ursache von Sehheschwerden zu erwähnen. Natürlich können wir diesen müssen stets daran denken, daß unser Auge stellt sich unser Auge auf unendlich, den sogenannten Fernpunkt, ein, bei manuellen Nahpunkt, Zwischen dem Nah- und Fernbeim Fernsehen, auf den sich das Auge einstellen muß. Für Brillenträger ist dabei grundsätzlich die Benutzung der Fernbrille Brille, auch ohne Fern- oder Autobrille, zurekturbrillen tragen. Der Anteil dieser gering Fehlsichtigen ist nach zahlreichen annimmt. Eine augenärztliche Untersuchung ist immer zu empfehlen, wenn Sehbeschwerden beim Fernsehen auftreten: der Facharzt kennt sie als sogenannte ashenopische Beschwerden. Empfehlenswert ist

Betrachtungsabstand nicht ändern, aber wir an andere Betrachtungsabstände gewöhnt Beim Autofahren und auch im Kino Arbeiten und beim Lesen dagegen auf den punkt aber liegt der Betrachtungsabstand zu empfehlen - obwohl man zur Benutzung der Nahbrille neigt. Gerade nur gering Fehlsichtige, die im normalen Leben ohne rechtkommen, müßten zum Fernsehen Kor-Untersuchungen höher, als man allgemein dann eine besondere Fernsehbrille. Das ist

> Bild 2. Frequenztafel Wellenund Strahlenarten

| Wellen-<br>länge | Schwingungszahl<br>(Frequenz) in Hertz |                                  | ١                      | Yellen- und Strahlenart                                                            |  |  |  |  |
|------------------|----------------------------------------|----------------------------------|------------------------|------------------------------------------------------------------------------------|--|--|--|--|
| 10 000 km        | 30                                     |                                  |                        | Techn. Wechselstrom 161/3 bzw.<br>50 Schwingungen je Sekunde                       |  |  |  |  |
| 1000 km          | 300                                    |                                  | ederfreituen           | Sprach- v. Musik-<br>schwingungen elektr.                                          |  |  |  |  |
| 100 km           | 3000                                   |                                  | Meder                  | elektr. Ströme Schwingungen                                                        |  |  |  |  |
| 10 km            | 30 Tausend                             |                                  |                        |                                                                                    |  |  |  |  |
| 1 km             | 300 Tausend                            |                                  |                        | Lange Wellen 5 5 A Sender                                                          |  |  |  |  |
| 100 m            | 3 Millionen                            | Vellen                           |                        | Mittlere Wellen  Kurze Wellen                                                      |  |  |  |  |
| 10 m             | 30 Millionen                           | Radio-Wellen                     |                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                             |  |  |  |  |
| 1 m              | 300 Millionen                          | EK                               | dener                  | Ultrakurze Wellen UKW-Rundfunk und Fernsehen                                       |  |  |  |  |
| 10 cm            | 3 Milliarden                           |                                  | - E                    | Dezimeter-Wellen Radar, Richtfunk                                                  |  |  |  |  |
| 1 cm             | 30 Milliarden                          |                                  |                        | Zentimeter-Wellen                                                                  |  |  |  |  |
| 1 mm             | 300 Milliarden                         |                                  |                        | Millimeter-Wellen Uberlappung der<br>Gebiete<br>Kürzeste erzeugbare elektr. Wellen |  |  |  |  |
| 100 μ            | 3 Billionen                            |                                  |                        |                                                                                    |  |  |  |  |
| 10 μ             | 30 Billionen                           |                                  | arota                  | Infrarot-Gebiet                                                                    |  |  |  |  |
| 1μ               | 300 Billionen                          | ichtwellen                       | 暑                      | (Wärme-<br>strahlen) Fern-<br>fotografie                                           |  |  |  |  |
| 1000 Å           | 3 000 Billionen                        | Light                            | 2/2/2                  | Sichtbares Licht  Chem. wirksame                                                   |  |  |  |  |
| 100 Å            | 30000 Billionen                        |                                  |                        | Lichtwellen Höhen sonne                                                            |  |  |  |  |
| 10 Å             | 300000 Billionen                       | _                                | in Maria               | Überlappung der Gebiete 🕇                                                          |  |  |  |  |
| ìÅ               | 3 Trillionen                           | ammastrahlen<br>Röntgenstrahlen  | Röntigenstrohlen       | Röntgenröhre                                                                       |  |  |  |  |
| 0,1 Å            | 30 Trillionen                          | Gammastrahlen<br>d Röntgenstrahl | 12                     |                                                                                    |  |  |  |  |
| 0,01 Å           | 300 Trillionen                         | Gami<br>ond Röi                  | y-Strahlen             | Radio-<br>aktive                                                                   |  |  |  |  |
| 1x               | 3 000 Trillionen                       | - 3 -                            | γ-St                   | Strahlung 3                                                                        |  |  |  |  |
| 0,1 x            | 30 000 Trillionen                      | ng .                             | Buop                   |                                                                                    |  |  |  |  |
| 0,01 x           | 300000 Trillionen                      | Kosmische<br>Strahlung           | ahanstrat<br>Ukrastrah | V                                                                                  |  |  |  |  |
| 0,001 x          | 3 Quadrillionen                        | - 22 -                           | Hähens                 | 0 0000                                                                             |  |  |  |  |

Nahpunkt, speziell für den Betrachtungsabstand beim Fernsehen. Weiter ist beim Fernsehen darauf zu

eine Fernbrille mit einer Korrektur von etwa 0,3...0,5 Dioptrien in Richtung auf den

achten, daß die Helligkeit nicht zu stark eingestellt wird, nicht nur der Bildröhre (die sich dadurch früher verbraucht), sondern auch der Augen wegen. Im allgemeinen ist ein Fernsehbild zehnmal heller als ein Bild auf der Kinoleinwand: die Leuchtdichte beim Fernsehschirm liegt damit in der Mitte zwischen Kino und der Beleuchtung bei Naharbeit. Schon lange wird daher empfohlen, eine Fernsehsendung nicht im abgedunkelten, sondern in einem leicht aufgehellten Raume zu betrachten. Ein zu dunkles Umfeld des Bildschirmes wird zur Ursache von Augenbeschwerden. Die Einführung des Breitwandverfahrens im Kino hatte u. a. den Grund, Augenbeschwerden durch das zu dunkle Umfeld zu vermeiden. Schließlich muß auch berücksichtigt werden, daß der Gesichtsfeldanteil beim Fernsehen äußerst gering ist. Unser Gesichtsfeld umfaßt rund 1800 und wird bei normaler Tätigkeit noch größer durch die Summe aus Gesichtsfeld und Blickfeld, weil wir den Kopf ja nicht ständig in einer Richtung halten. Moderne Breitwandverfahren (Cinerama, Todd-AO) ergeben Gesichtsfeldwinkel von 146° und erfassen unser Gesichtsfeld damit zu rund 80 %. Außerdem wird durch die akustischen Reize mit Hilfe der über die Projektionswand verteilten Lautsprecher die Blickbewegung ständig angeregt. Anders ist es beim Fernsehen. Im üblichen Betrachtungsabstand ergibt sich ein kleiner Gesichtsfeldwinkel von nur 6...8° und damit . . . ein außerordentlich starrer Blick. Nur eine zusätzliche Umfeldbeleuchtung vermag dem Auge entsprechenden Ausgleich zu geben. Man hat besondere Fernsehleuchten auf den Markt gebracht, die aber nicht in allen Fällen, z. B. in großen Räumen mit dunklen Wänden oder Möbeln, den gewünschten Erfolg erzielen. Das Flimmern des Fernsehbildes tritt bei zu großer Helligkeit auf. Das Auge bemerkt dann trotz seiner Trägheit die Pausen zwischen den einzelnen Bildern als Flimmern. Die Austastlücke zwischen den Bildern beträgt immerhin die Zeit von 19 bis 30 Zeilen zu je 64 Mikrosekunden, kann also fast 2 Millisekunden erreichen das Auge aber nimmt Lichtblitze von 1 Millisekunde (1/1000 Sekunde) noch ohne weiteres wahr. Eine automatische Helligkeitsregelung im Verhältnis zur Umfeldbeleuchtung ist daher eine ausgezeichnete Hilfe und als augenschonend anzusehen.

Besonders empfindlichen Personen wird empfohlen, zum Fernsehen schwach gelblich oder grau eingefärbte Gläser zu tragen. Jedoch darf der Absorptionsgrad 25...35 % nicht übersteigen und kein Gebiet der sichtbaren Strahlung, also auch nicht Blau, ausfiltern. Bei vielen Fernsehgeräten erfüllt die eingefärbte Schutzscheibe den gleichen Dienst.

Zusammenfassend wäre über die Lichtstrahlung beim Fernsehen zu sagen, daß vor allem bei falsch oder nichtkorrigierter Fehlsichtigkeit Beschwerden auftreten können. Eine Brillenkorrektur muß immer auf den Fernpunkt erfolgen, Nahzusatz höchstens 0,5 Dioptrien. Durch den kleinen Gesichtsfeldanteil des Bildschirms muß zur Vermeidung einer zu strengen Blickstellung die Sendung im aufgehellten Raume betrachtet werden. Eingefärbte Gläser können empfindliche Augen schonen und den subjektiven Kontrasteindruck verbessern.

3. Nun wenden wir uns noch der Röntgenstrahlung beim Fernsehgerät zu. Röntgenstrahlen sind elektromagnetische Strahlen. deren Wellenlänge kürzer als die des Lichtes ist. Der Tafel kann die Einordnung der Röntgenstrahlen im Frequenzspektrum entnommen werden (Bild 2). Beim Aufprall schneller Elektronen auf einen festen Körper, beim plötzlichen "Abbremsen" also, entsteht die Röntgenstrahlung als sogenannte Bremsstrahlung. "Schnelle Elektronen", die eine Bremsstrahlung hervorrufen können, bedürfen einer Beschleunigungsspannung von mindestens 15 kV (15 000 Volt); solche Spannungen treten als Hochspannung in der Fernsehbildröhre auf. Die Strahlen können nach dem Aufprall auf den Bildschirm durch die Glaswand austreten, allerdings nur als sehr weiche Röntgenstrahlung, die erst oberhalb 25 kV härter

Röntgenstrahlen können, wie alle anderen ionisierenden Strahlungen auch, in zweifacher Weise dem Menschen schädlich werden:

- a) somatisch, d. h. durch Einwirkung auf die Körperzellen, und
- b) genetisch, d. h. durch Einwirkung auf die Keimzellen.

Die somatische Wirkung betrifft wie ein Unfall immer nur den einzelnen Menschen; sie tritt nur ein bei hohen Röntgenstrahlungsdosen, so daß in diesem Zusammenhang nicht weiter darauf eingegangen werden muß

Die genetische Wirkung ist für den Einzelmenschen selbst ohne Bedeutung und betrifft den Menschen als Gattung, indem durch Schädigung der Keimzellen Änderungen der Erbanlagen eintreten können. Als Maß für die Strahlungsbelastung gibt man die Röntgenstrahlungsdosis an, die während einer Generation (30 Jahre) jedes Individuum der Bevölkerung im Mittel erhält. Man ist international übereingekommen, als Grenze für die derart definierte Strahlungsbelastung, die noch als zulässig anzusehen ist, 10 Röntgen (10 r) zuzulassen. Die Berechnung dieser Dosis ist recht kompliziert, da alle ionisierenden Strahlungen, sowohl die natürlichen als auch die künstlich erzeugten, dabei in Betracht gezogen werden müssen.

Da es sich bei dem genannten Grenzwert um einen Mittelwert handelt, können für einzelne Personenkreise höhere Werte zugelassen werden. Immerhin sollen auch Personen, die dauernd an Röntgeneinrichtungen beschäftigt sind, nicht mehr als 5 r im Jahre erhalten, um somatische Schäden zu vermeiden; dabei darf eine Wochendosis 0,3 r nicht übersteigen. Die Überwachung kann durch lichtdicht verpackte Filmnegative erfolgen, die an der Arbeitskleidung getragen werden. Nach der Entwicklung zeigt dann der Grad der Schwärzung (d. h. Belichtung durch Röntgenstrahlen) die aufgenommene Dosis an. Nach neuesten Messungen beträgt die Gesamtbelastung des Menschen durch Strahlen in 30 Jahren ca. 4,5 r.

Die internationale Maßeinheit der Röntgendosis 1 r ist dadurch definiert, daß sie in 1,29 mg Luft (mg = Milligramm) durch Ionisation je eine elektrostatische Ladungseinheit beider Vorzeichen erzeugt; die Messung erfolgt in einer Ionisationskammer.

Früher wurde die etwas anders definierte Einheit R verwendet, die um wenige Prozent von r abweicht.

Da aber auch r eine zu große Einheit ist, werden in der Praxis die daraus abgeleiteten Einheiten Milli-Röntgen (mr) und Mikro-Röntgen ( $\mu r$ ) verwendet. Es gilt: 1 r = 1000 mr = 1 000 000  $\mu r$ .

Ergibt eine zeitlich konstante Strahlung in einer Sekunde (1 sec) eine Dosis von  $1 \,\mu r$ , so besitzt diese Strahlung eine Dosisleistung von  $1 \,\mu r$ /sec, bei anderer Wahl der Zeit (z. B. Jahr) oder der Dosiseinheit (z. B. mr) ergeben sich andere Einheiten, die sich jeweils leicht umrechnen lassen.

Die Jahresbelastung eines Menschen beträgt bei der derzeitigen Gesamtbelastung von 4,5 r in 30 Jahren somit 4,5 r : 30 = 4500 mr : 30 = 150 mr/Jahr. Der zulässige Wert von 10 r in 30 Jahren (= pro Jahr 333 mr) ist somit noch nicht erreicht.

Gelegentlich findet man in der Presse die Bezeichnung "Röntgen-Einheiten". Gemeint ist damit aber nicht r, was richtig wäre, sondern mr.

Wie kommt es nun zu der derzeitigen Strahlenbelastung des Menschen? Wir unterschieden bereits zwischen der "natürlichen Strahlung", die ohne menschliches Dazutun auftritt und ständig vorhanden ist, und der "künstlichen Strahlung", durch den Menschen und seine Technik verursacht.

Natürliche Strahlung setzt sich zusammen aus der:

Kosmischen Strahlung aus den
Inneren Strahlung aus den
Bestandteilen des menschlichen Körpers (durch Kalium 40 u. Kohlenstoff 14) ca. 22 mr/Jahr
Strahlung aus der Umgebung (z. B. Gestein) ca. 70 mr/Jahr
Das sind zusammen ca. 127 mr/Jahr

Von diesem Mittelwert können die gemessenen Werte je nach den örtlichen Gegebenheiten stark abweichen. Die kosmische Strahlung z. B. nimmt mit der Höhe über dem Meeresspiegel zu und beträgt in 3000 m Höhe (Hochgebirge, Flugzeug) bereits das Dreifache.

Auch die Strahlung aus der Umgebung ist verschieden: Je nach Strahlung der Erdkruste, der Baustoffe, der Straßenbeläge (Asphalt, Beton) usw. kann sie um das Zehnfache schwanken.

Normaler Kalkstein hat nur eine Abstrahlung von 25 mr/Jahr Granit aber bereits eine von in den Alpen kommen Granitarten vor mit 250 mr/Jahr und schwedischer Alaunschiefer strahlt mit 1150 mr/Jahr

Die künstliche Strahlung, durch die menschliche Technik erzeugt, ergibt ungefähr folgende Werte:

Ärztliche Röntgenuntersuchungen ca. 25 mr/Jahr
Berufliche Strahlenbelastung ca. 1,7 mr/Jahr
Reaktorbetriebe ca. 0,1 mr/Jahr
Schuhdurchleuchtungen ca. 0,1 mr/Jahr
Leuchtziffern (z. B. Armbanduhren ca. 2,0 mr/Jahr
Atomversuche ca. 1,0 mr/Jahr

Zusammen ca. 29,9 mr/Jahr

Die Gesamtbelastung des Menschen durch natürliche und künstliche Strahlen macht somit  $127 + 29.9 \, \mathrm{mr/Jahr} = 156.9 \, \mathrm{mr/Jahr}$  aus.

Dieser Wert variiert jedoch, wie aus vorstehendem ersichtlich, nach unten und oben von etwa 80 bis 300 mr/Jahr, so daß wir gut bei dem zuerst erwähnten Mittelwert von 150 mr/Jahr bleiben können.

#### Fernsehtechnik

Fällt es nun etwa jemandem ein, die Schwäbische Alb (Kalkstein) besonders zu empfehlen, aber vor Reisen nach Schweden (Alaunschiefer) zu warnen oder die Gefahren des Fliegens und des Hochgebirges aufzuzeigen? Denken wir an die Himalaja-Expeditionen und die Einwohner von Tibet, Peru und Bolivien, die theoretisch schon ausgestorben, mindestens jedoch degeneriert sein müßten? Nein! Man nimmt lieber als "Hausteufel" das Fernsehen auf die Hörner.

Deshalb sei jetzt auch die Strahlung beim Fernsehen ausführlich besprochen. Mit hochempfindlichen Meßgeräten läßt sich an einem Fernsehgerät die äußerst schwache Röntgenstrahlung messen. Um sie überhaupt zahlenmäßig ausdrücken zu können, brauchen wir als Dosisangaben pro Sekunde sogar Bruchteile von Mikro-Röntgen (ur).

Als ungünstigster Fall wird der Betrieb mit erhöhter Anodenspannung (18 kV) durchgeführt. Ferner sei eine zu große Helligkeit eingestellt (Strahlstrom ca. 100  $\mu A)$ . Auch die Schutzglasscheibe wird zur Messung weggelassen. Unmittelbar am Konus der Bildröhre (hier ist die Glasstärke rund 4 mm) lassen sich 0,1  $\mu r/sec$  messen, vor der Bildröhre (Glasstärke hier rund 8 mm) mißt man 0,0005  $\mu r/sec$ .

Was können wir in der Praxis mit diesen Werten anfangen?

Wir setzen sie zur gesamten Strahlungsdosis (156 mr/Jahr) in bezug, indem wir sie von Jahresdosis auf Sekundendosis umrechnen:

156 mr = 156 000  $\mu r$  ergeben, durch die Anzahl der Sekunden eines Jahres geteilt, annähernd 0,005  $\mu r/sec.$ 

Demnach wäre die Belastung durch das Fernsehen pro Sekunde durch das Verhältnis 0,005  $\mu r:0,0005~\mu r=10:1$  auszudrücken und die Belastung durch das Fernsehen betrüge also etwa 10 % der Gesamtbelastung? Nein, das ist ein Trugschluß, weil niemand 24 Stunden am Tage vor dem Bildschirm sitzt. Nehmen wir einen Durchschnitt von drei Fernsehstunden pro Tag an, dann beträgt die Strahlenbelastung ohne Schutzscheibe pro Jahr

 $3\cdot 365\cdot 60\cdot 60\cdot 0,0005~\mu r=1971~\mu=1,97~mr.$  Dies wurde durch Messungen in verschiedenen Firmen und Instituten, darunter im Radiologischen Institut der Universität Freiburg und der Universität München, bestätigt.

Unter Berücksichtigung der Schutzscheibe und des normalen Betrachtungsabstandes aber sind die Werte noch kleiner und stark abgeschwächt; allein die Schutzscheibe schwächt die Dosis auf ½100 ab.

Die tatsächliche Dosis variiert infolgedessen um ca. 0,1 mr/Jahr und stellt mit diesem Mittelwert nur ein 1560stel der Gesamtbelastung dar, nur 0,64 Promille. Mit zunehmender Bildröhrengröße wächst, des höheren Druckes wegen fertigungsmäßig bedingt, die Wandstärke des Glases, so daß sich noch geringere Strahlungswerte einstellen. Außerdem liegt die heutige Hochspannung um bzw. unter 16 kV und wird stabilisiert. Schon unsere brave Armbanduhr, die wir bisweilen 24 Stunden hindurch nicht ablegen, bringt uns eine mehrfach höhere Strahlenbelastung als das Fernsehgerät.

Die vorstehende, in Anbetracht zahlreicher diesbezüglicher Diskussionen besonders wichtige Arbeit entnahmen wir mit freundlicher Genehmigung dem Philips-Fernseh-Taschenbuch 1961.

## Meßpunktschablonen für gedruckte Schaltungen

Unter der Bezeichnung Trace (Transistor Radio Automatic Circuit Evaluator) bringt die amerikanische Philco-Gesellschaft für neun Modelle ihrer Transistorempfänger in gedruckter Schaltung der Saison 1960 Schablonen heraus, die eine wesentliche Hilfe bei der Fehlersuche darstellen und geeignet sind, ein besonderes Kapitel in der Reparaturtechnik einzuleiten.

Fragt man sich, wie in der Praxis des Werkstatt-Alltags Fehler gesucht und gefunden werden, so stößt man auf die Tatsache, daß der Techniker von markanten Punkten der Schaltung ausgeht, die ihm als Meßpunkte dienen oder Ausgang von Leitungen sind, die zu Meßpunkten führen. Es liegt

ein Signal zugeführt bzw. abgenommen werden kann. Da an die Stelle der Platine mit Leitungen und Lötstellen eine größtenteils freie Fläche der Schablone tritt, ist Raum für Erläuterungen gegeben, wie z. B. über die Höhe der zu messenden Spannung, wenn das Gerät in Ordnung ist, über die Art eines an dieser Stelle zuzuführenden Signals und dgl. mehr.

Darüber hinaus wird der Gang der Fehlersuche deutlich markiert. Hierzu dienen verschiedene Farben: schwarz sind die Einzelteile und die zu messenden Spannungen aufgedruckt, blau der Weg des hochfrequenten Signals und die notwendige Einstellung des Hf-Generators, wenn ein Signal zuge-

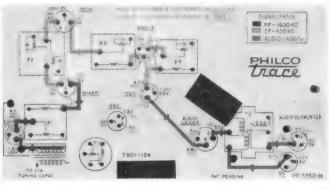



Bild 1. Philco-Trace-Schablone zu dem in Bild 2 als Schaltung wiedergegebenen Empfänger Modell T-901

auf der Hand, daß bei diesem Verfahren die Pole der Röhrenfassungen, Anschlüsse von Spulenbechern und Transformatoren die größte Rolle spielen. Bei Transistorempfängern sind die drei Transistoranschlüsse solche Meßpunkte, die neben den bereits genannten hervorragen. Da aber Transistoren nicht mit Fassungen eingebaut, sondern eingelötet zu werden pflegen, setzt bereits eine erhebliche Abweichung von der Technik der Fehlersuche im Röhrenempfänger ein, die bei gedruckter Schaltung gelegentlich zu völliger Verwirrung führen kann. Es bereitet Schwierigkeiten, die Meßpunkte zu finden, weil durch die Unterbringung von Leitungen und Einzelteilen auf den beiden Seiten der Platine die Übersicht über den Aufbau der Schaltung gestört ist.

Die verlorengegangene Übersicht ersetzt nun die Meßpunktschablone der Philco. Es handelt sich dabei um ein Blatt aus Kunststoff, das die Größe der Platine hat. Es wird auf die gedruckte Schaltung aufgelegt und ersetzt durch einen Aufdruck den Anblick der gedruckten Schaltung selbst (Bild 1). Dort wo in der Schaltung Meßpunkte sind, hat die Schablone ein Loch, durch das mit der Prüfspitze die Spannung gemessen oder

führt werden soll, rot bedeutet den Weg des Zf-Signals und die dazu erforderliche Frequenz, grün den Weg des niederfrequenten Signals. Das Schaltbild des betreffenden Empfängermodells ist auf der anderen Seite der Schablone zu finden. So zeigt Bild 2 die Schaltung, zu der die Vorderseite der Schablone nach Bild 1 gehört.

Praktisch wird die Schablone so benutzt, daß sie mit der Platine zur Deckung gebracht wird; dann liegen unter den Löchern die auf der Fläche der Schablone bezeichneten Meßpunkte. Man sieht, das Verfahren eignet sich in dieser Form nur für solche Empfänger in gedruckter Schaltung, bei denen die Platine offenliegt, wenn man die Rückwand des Gehäuses abnimmt. Diese Art der Unterbringung ist bei handlichen Transistorempfängern die Regel, und für solche Geräte sind Schablonen vorerst auch nur vorhanden.

Daß das Beispiel der Philco bereits Schule gemacht hat, zeigt Bild 3, die Wiedergabe einer solchen Schablone, wie sie die General Electric für einen ihrer Transistorempfänger herausgegeben hat. Bezeichnenderweise nennt die General Electric ihre Schablone "Stiller Partner". Im Gegensatz zu der der Philco ist die unter ihr liegende gedruckte Schaltung schwach angedeutet; dafür fehlt die farbige Bezeichnung des Weges des Signals durch den Empfänger. Die Spannungen sind ohne besondere Kennzeichnung eingedruckt, aber mit Pfeilen zum Meßpunkt versehen. Ein Quadrat bedeutet, daß hier die Zwischenfrequenz von 455 kHz zugeführt werden kann, ein Kreis deutet auf die Zuführung eines tonfrequenten Signals von 400 Hz hin.

Das Verfahren scheint endlich die Lösung der Probleme zu sein, die sich durch dié Einführung gedruckter Schaltungen für den Techniker ergeben haben. Solange er es mit einem einzigen Empfängermodell zu tun hat, ist es nicht schwer, sich die einzelnen Meßpunkte zu merken; das gehört zur Routine. Kommen aber, wie es gewöhnlich der Fall zu sein pflegt, die verschiedensten Modelle nebeneinander zur Reparatur, so stellen solche Schablonen mit Meßpunkten eine wesentliche Arbeitserleichterung dar, die sich nicht zuletzt auf die Zeit auswirkt, die für die Fehlersuche aufgewandt werden muß und oft den größten Posten der Reparatur-Dr. A. Renardy rechnung ausmacht.

Steckler, L.: Trace Simplifies Servicing. Radio-Electronics, Dezember 1960.

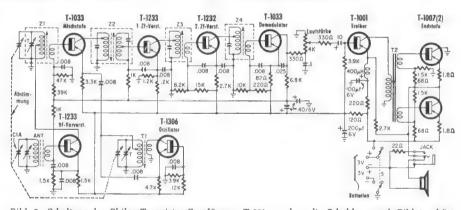



Bild 2. Schaltung des Philco-Transistor-Empfängers T-901, zu dem die Schablone nach Bild 1 gehört (Die Schaltung wurde in der in den USA gebräuchlichen Darstellung übernommen, nur die Stufenbezeichnungen wurden deutsch eingesetzt.)

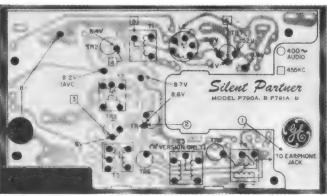



Bild 3. Meßpunkt-Schablone zu den Empfüngern Modell P 790 A, BP 791 A,B der General Electric Company

#### Notwendige Preiserhöhung

Seit dem 1. November 1957 sind die Lohnund Gehaltskosten im graphischen Gewerbe um mehr als ein Drittel gestiegen, ganz zu schweigen von den erheblichen Erhöhungen vieler Nebenkosten. Wir sind deshalb sehr gegen unseren Willen — gezwungen, den Nummern-Preis der Radio-Praktiker-Bücherei, der seit diesem Zeitpunkt unverändert ist, mit Wirkung vom 15. Oktober um ein knappes Fünftel heraufzusetzen. Der Preis je Nummer wird in Zukunft 1.90 DM betragen, Mehrfachnummern entsprechend. 1.1 Fehler

## Einführung in die Feinmeßtechnik

1. Teil

Wird mit einem Vielfachinstrument etwa die Anodenspannung in einem Gerät gemessen, dann kann der vom Instrument angezeigte Wert bekanntlich falsch sein, und zwar beträgt der mögliche Fehler

$$F = \pm K \cdot M \tag{1}$$

worin K die Instrumentenklasse und M den Meßbereich bedeuten.

Mißt man z. B. im 300-V-Bereich eines Instrumentes der Klasse 1,5 eine Spannung von 130 V, dann liegt die tatsächliche Spannung zwischen 125,5 und 134,5 Volt. Den möglichen Fehler (in Prozent des richtigen Wertes) in Abhängigkeit von der Anzeige zeigt Bild 1 für ein Instrument der Klasse 1,5. Man erkennt, daß der Fehler im unteren Bereich der Skala sehr große Werte annehmen kann. Einigermaßen genaue Messungen sind, wie man Bild 1 entnehmen kann, nur etwa in den oberen zwei Dritteln der Skala möglich.

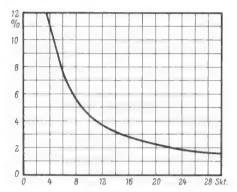



Bild 1. Größter möglicher Meßfehler in Abhängigkeit von der Anzeige für ein Instrument der Klasse 1,5

Will man sich danach richten und das untere Skalendrittel für Messungen nicht zulassen, dann darf das Verhältnis zweier aufeinanderfolgender Meßbereiche nicht größer als 3:1 sein, denn nur dann bildet der niedrigere Meßbereich ein Drittel des folgenden. Der Sprung von 6 auf 30 V oder auch von 30 auf 150 V ist demnach mit einem Verhältnis von 5:1 zu groß.

Eine Meßbereichsstufung, die dem eben Gesagten gerecht werden würde, wäre z. B. 1 V, 3 V, 9 V, 27 V, 81 V usw. Eine solche Einteilung wäre jedoch mit der Forderung nach gleicher Skala für alle Meßbereiche nicht vereinbar. Zu einer guten Näherung kommt man aber, wenn die Bereiche 3 V, 9 V, 30 V, 90 V usw. betragen. Man müßte dann, wenn eine Skala mit 30 Teilstrichen vorliegt, in den 9·10n-Bereichen die Anzeige mit 3 multiplizieren. Noch einfacher wird die Ablesung, wenn man zwei Skalen vorsieht, nämlich eine mit 30 und eine mit 100 Teilstrichen. Die Bereichsstufung wäre dann 1 V, 3 V, 10 V, 30 V, 100 V usw.

Die Gleichung der in Bild 1 gezeigten Kurve soll noch angegeben werden; sie lautet:

$$F = \frac{K \cdot M}{A} \tag{2}$$

A = Anzeige, übrige Größen wie vorher. Es ist zu beachten, daß M und A entweder in Skalenteilen oder in Volt, auf jeden Fall aber beide in der gleichen Einheit eingesetzt werden müssen. Denn kürzt sich diese Einheit heraus, und man erhält F in %. Auf diese Weise ist es möglich, die Fehlerkurve auch für andere Klassen zu bestimmen.

Selbstverständlich lassen sich alle bis jetzt gemachten Betrachtungen auch auf die Strommeßbereiche übertragen, Diese neue Aufsatzreihe der FUNKSCHAU behandelt zunächst die allgemeinen Grundlagen der Feinmeßtechnik und bringt später Anleitungen zum Selbstbau von Eicheinrichtungen.

#### 1.2 Korrektur

Man kann die Genauigkeit seines Instrumentes erhöhen, indem man eine Korrekturtabelle dazu anfertigt. Es lohnt jedoch nur bei solchen Geräten, die mechanisch noch einwandfrei in Ordnung sind; das gilt vor allem für die Lager. Man kann leicht nachprüfen, ob diese Forderung erfüllt ist, indem man an das Instrument eine Spannung legt und dann mit einer Fingerspitze leicht seitlich gegen das Gehäuse klopft. Der Zeiger soll dann bei einem guten Instrument seine Lage um höchstens 0,1 Skalenteil verändern. Dieses Klopfen sollte man sich überhaupt zur Angewohnheit machen, wenn man auf eine genaue Ablesung Wert legt. Der Zeiger kann schon einmal etwas hängen und nimmt erst nach dieser kleinen Erschütterung seine richtige Lage ein.

Zur Anfertigung der Korrekturtabelle geht man so vor, daß man sein Instrument parallel mit einem guten Vergleichsinstrument, das in der Klasse 0,2 liegen soll, an eine einstellbare, möglichst stabilisierte Spannungsquelle schaltet. Nun stellt man an dem Vergleichsinstrument verschiedene Spannungen etwa in Stufen von 5 zu 5 Skalenteilen genau ein und notiert für jede Einstellung die Abweichung A des zu korrigierenden Instrumentes in Skalenteilen. So verfährt man bei allen Meßbereichen, Ganz analog hierzu korrigiert man die Strommeßbereiche, wozu man natürlich eine regelbare Stromquelle benötigt und die beiden Instrumente hintereinanderschaltet. Die erhaltene Korrekturtabelle kann so aussehen, wie sie Bild 2 im Ausschnitt zeigt. Bei ihrer Anwendung gelten die Regeln:

Ablesen eines Wertes: Anzeige minus Korrektur.

Einstellen eines Wertes: Sollwert plus Korrektur.

$$W = A - \Delta$$
  
 $A = W + \Delta$  (3)  
 $W = wirklicher Wert$ 

Liegt der angezeigte Wert zwischen zwei Skalenpunkten mit bekannter Korrektur, dann wird man zweckmäßig die Korrektur des Skalenpunktes in Anwendung bringen, der der Anzeige am nächsten liegt.

| Bereich: | 30 V  | -     |       |    |       |       |      |
|----------|-------|-------|-------|----|-------|-------|------|
| Anzeige  | 5     | 10    | 15    | 20 | 25    | 30    | 014  |
| Fehler A | - 0,2 | - 0,1 | 0     | 0  | + 0,2 | + 0,1 | Skt. |
| Bereich: | 150 V |       |       |    |       |       |      |
| Anzeige  | 5     | 10    | 15    | 20 | 25    | 30    | 01.4 |
| Fehler A | 0,3   | - 0,4 | - 0,2 | 0  | - 0,1 | + 0,1 | Skt. |

Bild 2. Ausschnitt aus einer Korrekturtabelle

#### 1.3 Strommessungen

Bei genauen Strommessungen, insbesondere beim Messen von kleinen Strömen, ist der Innenwiderstand des Instrumentes zu berücksichtigen. Die Verhältnisse sind in Bild 3 wiedergegeben. Der Innenwiderstand des Instrumentes sowie der Widerstand der Zuleitungen sollen in R<sub>i</sub> zusammengefaßt

sein. Bei eingeschaltetem Instrument gilt für den Stromkreis

 $U = I_g (R + R_i)$  (4)

und ohne Instrument

$$U = I_t \cdot R \tag{5}$$

mit  $I_g=$  gemessenem und  $I_t=$  tatsächlichem Strom. Durch Gleichsetzen der Formeln (4) und (5) erhält man

$$I_{t} = I_{g} \left( 1 + \frac{R_{i}}{R} \right) \tag{6}$$

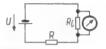





Bild 3. Strommessung

Bild 4. Spannungsmessung

Man erkennt, daß der Fehler nur dann vernachlässigt werden kann, wenn  $R_i$  wesentlich kleiner als R ist. Hierbei wird vorausgesetzt, daß die Spannung U konstant ist. Ferner muß natürlich der Innenwiderstand  $R_i$  bekannt sein. Der Vollständigkeit wegen soll die Formel zu seiner Ermittlung angegeben werden. Es ist

$$R_{i} = R_{s} \cdot \frac{I_{e}}{I_{b}} \tag{7}$$

 $R_8$  = Widerstand der Drehspule,  $I_e$  = Strom bei Endausschlag des Meßwerks und  $I_b$  = eingeschalteter Strommeßbereich.

#### 1.4 Spannungsmessungen

Bei genauen Spannungsmessungen muß der Innenwiderstand der Spannungsquelle bekannt sein. Wenn man mit einer Schaltung nach Bild 4 zwei Strommessungen mit zwei verschiedenen Widerständen R durchführt, die als R<sub>1</sub> und R<sub>2</sub> bezeichnet werden sollen, dann bekommt man

$$U = I_1 \cdot R_i + I_1 \cdot R_1 \tag{8}$$

und

$$U = I_2 \cdot R_1 + I_2 \cdot R_2 \tag{9}$$

Aus diesen beiden Gleichungen kann man den Innenwiderstand ermitteln:

$$R_{i} = \frac{I_{2}R_{2} - I_{1}R_{1}}{I_{1} - I_{2}}$$
 (10)

Andererseits erhält man durch Eliminieren von R<sub>i</sub> die Klemmenspannung der unbelasteten Spannungsquelle zu

$$U = \frac{I_1 (R_1 - R_2)}{1 - \frac{I_1}{I_2}}$$
 (11)

Bei der Messung der Ströme müssen natürlich die im Abschnitt 1.3 angestellten Überlegungen berücksichtigt werden.

Die EMK einer Spannungsquelle, also die Spannung im unbelasteten Zustand, kann man auch mit einem statischen Instrument messen. So ist es z. B. möglich, mit dem Multizellular-Voltmeter von Hartmann & Braun Spannungen von wenigen Volt statisch zu messen; das sog. Quadrantenvoltmeter zeigt noch Spannungen von weit unter

einem Volt an. Die Genauigkeit solcher Instrumente genügt jedoch den in diesem Rahmen gestellten Anforderungen nicht.

#### 2. Widerstandsmessung

#### 2.1 Strom- und Spannungsmessung

Die genaue Kenntnis des Wertes eines gegebenen Widerstandes ist in der Feinmeßtechnik von besonderer Bedeutung, wie sich später noch zeigen wird. Deshalb soll nun eingehend über die Widerstandsmessung gesprochen werden.



Bild 5. Bestimmung des Widerstandes aus Stromund Spannungsmessung

Die wohl am wenigsten aufwendige Methode ist die Strom- und Spannungs-Messung nach Bild 5. Berücksichtigt man, daß von dem Strommesser auch der Strom angezeigt wird, der durch den Spannungsmesser fließt, dann ist

$$I = I_g - I_v \tag{12}$$

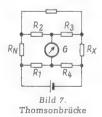
und mit

$$I_{v} = I_{e} \cdot \frac{A}{M} \tag{13}$$

erhält man schließlich

$$R = \frac{U}{I_g - I_e \cdot \frac{A}{M}}$$
 (14)

Das sei an einem Beispiel erläutert. Der Strommesser zeige 2,68 mA an, das Voltmeter 0,62 V im 1,5-V-Bereich, Wenn das Voltmeter einen Eigenverbrauch von  $I_{\rm e}=2$  mA hat, dann ist der hindurchfließende Strom  $2\cdot0,82/1,5=1,09$  mA. Zieht man diesen Wert von der Anzeige des Strommessers ab, dann erhält man als Strom durch den Widerstand 1,59 mA, und der Wert des Widerstandes selbst beträgt damit 516 O.


Mit genauen Instrumenten kann man auf diese Art zu brauchbaren Ergebnissen kommen, doch wird die Gemauigkeit sehr bald von der Auflösung der Instrumente begrenzt, denn mehr als drei Stellen lassen sich von den Skalen beim besten Willen nicht ablesen; die vierte Stelle ist allenfalls schätzbar. Die erreichbare Genauigkeit wird etwa um 1 % herum liegen.

#### 2.2 Brückenschaltungen

Eleganter sind Nullmethoden, bei denen die Ablesung eines Strom- oder Spannungswertes entfällt. Man braucht sich so nicht von der Genauigkeit eines Instrumentes abhängig zu machen, wohl aber von der Empfindlichkeit. Bekannt sind die Wheatstonesche und die Thomsonbrücke nach Bild 6 und Bild 7, wie sie in den Funktechnischen Arbeitsblättern Mv 51 ausgiebig behandelt sind. Deswegen soll hier nur das Wichtigste kurz erwähnt werden.



Bild 6. Wheatstonesche Brücke



Bei der Wheatstoneschen Brücke nach Bild 6 beträgt der Galvanometerstrom

$$I_{\mathbf{g}} = I \cdot \frac{R_2 R_3 - R_1 R_4}{R_{\mathbf{g}} (R_1 + R_2 + R_3 + R_4) + (R_1 + R_3) (R_2 + R_4)}$$

Die Brücke ist abgeglichen, wenn

$$R_1: R_2 = R_3: R_4$$
 (16)

ist.

Macht man z. B.  $R_1=2~\Omega$ ,  $R_2=6~\Omega$ ,  $R_3=5~\Omega$  und  $R_4=15.1~\Omega$ , dann ist  $R_4$  im Verhältnis zu dem für das Brückengleichgewicht erforderlichen Wert von 15  $\Omega$  um 0.67 % zu groß. Nimmt man an, daß der Innenwiderstand des Galvanometers 500  $\Omega$  beträgt und wählt man die Brückenspeisespannung so, daß I gleich 50 mA wird, dann erhält man einen Galvanometerstrom  $I_g$  von 7.05 · 10 $^{-7}$  A.

Teilwiderständen  $R_1$  und  $R_2$  besteht. Einer zweiten Spannung  $U_2$  liegt die Reihenschaltung von  $R_3$  und  $R_4$  parallel. Ferner ist zu beachten, daß die gleichnamigen Pole der beiden Spannungen untereinander verbunden sind. Es liegt nahe, den allgemeinen Ausdruck für den Galvanometerstrom zu bestimmen und hieraus abzuleiten, welche Verhältnisse vorliegen, wenn dieser zu Null wird. Wendet man auf die Schaltung die beiden Kirchhoffschen Gesetze für die Maschen und Knoten an, dann erhält man für den gesuchten Galvanometerstrom

$$I_{g} = \frac{U_{1}R_{2} (R_{3}+R_{4}) - U_{2}R_{4} (R_{1}+R_{2})}{R_{1}R_{2} (R_{3}+R_{4}) + R_{1}R_{4} (R_{g}+R_{3}) + R_{2}R_{4} (R_{g}+R_{3}) + R_{g}R_{3} (R_{1}+R_{2})}$$
(18)

Das bedeutet z. B. bei einem Instrument mit einer Empfindlichkeit von 10-6 A/mm einen Ausschlag von 0,7 mm. Bedenkt man, daß 10-6 A/mm durchaus keinen hohen Anspruch an die Empfindlichkeit darstellt (es gibt heute Instrumente mit 1 µA Vollausschlag bei 100 mm Skalenlänge!) und daß noch wesentlich kleinere Ausschläge als 0,7 mm wahrgenommen werden können, dann erkennt man, daß mit 0,67 % die Genauigkeitsgrenze der Wheatstoneschaltung noch lange nicht erreicht ist.

Allerdings sind der Schaltung auch Grenzen gesetzt; bei kleinen Widerstandswerten wird die Messung deshalb bald ungenau, weil die Zuleitungswiderstände mit eingehen, und nach oben hin wird — bei konstanter Brückenspeisespannung — der Galvanometerstrom zu klein. Man kann sich hier helfen, indem man die Spannung erhöht, wobei man jedoch darauf achten muß, daß die beteiligten Widerstände nicht über das zulässige Maß hinaus belastet werden. Man kommt so immerhin in einen Meßbereich von  $10^8...10^8\,\Omega$ .

Für die Messung von Widerständen bis  $1\,\Omega$  wird die Thomsonbrücke verwendet, deren Prinzip in Bild 7 wiedergegeben ist. Die Spannungsabfälle des unbekannten Widerstandes  $R_X$  und eines Normalwiderstandes  $R_N$  werden gesondert an die Meßbrücke geführt, so daß das Meßergebnis nicht durch den Widerstand der Zuleitungen gefälscht wird. Der allgemeine Ausdruck für den Galvanometerstrom ist sehr unhandlich, so daß lediglich mitgeteilt werden soll, daß bei abgeglichener Brücke  $(I_g=0)$ 

$$R_X = R_N \cdot \frac{R_4}{R_1} = R_N \cdot \frac{R_3}{R_2}$$
 (17)

ist. Solche Brücken, wie sie z. B. als Pontavi-Thomson von Hartmann & Braun technisch ausgeführt werden, stellen wichtige Werkstattinstrumente dar, wo es auf zuverlässige Messungen von kleinen Widerständen, wie etwa Wicklungswiderständen von elektrischen Maschinen, ankommt. In der Feinmeßtechnik werden sie durch den gleich zu besprechenden Kompensator übertroffen, so daß sich eine eingehende Behandlung erübrigt. Wer sich dennoch näher damit beschäftigen möchte, der sei auf die bereits erwähnten Funktechnischen Arbeitsblätter Mo 51 verwiesen.

#### 3. Messungen mit dem Kompensator

#### 3.1 Das Kompensationsprinzip

Wenden wir uns nun der ausführlichen Beschreibung einer Meßmethode zu, deren Genaufgkeit bis heute noch nicht überboten wurde; es ist die Kompensationsmethode. Zur Erläuterung sei der einfache Fall einer Spannungskompensation nach Bild 8 betrachtet. Der Spannung U1 wird

ein Spannungsteiler parallelgelegt, der aus den beiden Bei Stromlosigkeit des Galvanometers ist  $I_{\rm g}=0,\, d.\,\, h.\,\, also$ 

 $U_1R_2 (R_3 + R_4) - U_2R_4 (R_1 + R_2) = 0 \quad (19)$  oder nach Umstellung

$$U_1 \cdot \frac{R_2}{R_1 + R_2} = U_2 \cdot \frac{R_4}{R_3 + R_4}$$
 (20)

Andererseits kann man die Gleichungen für die Spannungsabfälle an  $R_2$  und  $R_4$  aufstellen. Man erhält als Spannung an  $R_2$ 

$$U = U_1 \cdot \frac{R_2}{R_1 + R_2} \tag{21}$$

und als Spannung an R4

$$U' = U_2 \cdot \frac{R_4}{R_3 + R_4} \tag{22}$$

Vergleicht man die Gleichungen (21) und (22) mit Gleichung (20), dann erkennt man, daß bei Stromlosigkeit des Galvanometers U=U' ist, d. h. die Spannungsabfälle an  $R_2$  und  $R_4$  sind gleich. Dieser Zustand kann z. B. durch Verändern des Widerstandsverhältnisses  $R_1/R_2$  erreicht werden.

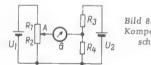



Bild 8. Einfache Kompensationsschaltung

Läßt man nun R3 wegfallen und denkt sich U2 an die Stelle von R4 gesetzt, dann läßt sich sicherlich ebenfalls eine Stellung des Schleifers A finden, bei welcher durch das Galvanometer kein Strom fließt. Nach den vorangegangenen Überlegungen muß dann der Spannungsabfall an R2 gleich U2 sein. Stromlosigkeit des Galvanometers bedeutet jedoch, daß U2 vollkommen unbelastet ist, d. h. daß in dem Kreis R2 - Galvanometer -U2 die Zuleitungswiderstände, Innenwiderstände von G und U2 sowie die Kontaktwiderstände (etwa bei A) überhaupt keine Rolle spielen. Wenn man jetzt einen Weg findet, um den Spannungsabfall an R2 genau zu bestimmen, dann hat man damit auch die Spannung U2 ermittelt, und zwar gleich die EMK der unbelasteten Spannungsquelle, da der Innenwiderstand nicht in die Messung mit eingeht, Deshalb sollen solche Spannungen in Zukunft auch E2 usw. benannt werden.

Unter der Voraussetzung, daß  $R_1$  und  $R_2$  genau bekannt sind, bieten sich zur Ermittlung der an  $R_2$  stehenden Spannung zwei Möglichkeiten an. Entweder mißt man den Strom, der durch  $R_2$  fließt, mit einem Präzisionsinstrument und berechnet damit die gesuchte Spannung, oder aber man benutzt für  $U_1$  eine Spannungsquelle mit genau bekannter EMK und kann so den Strom und damit die gesuchte Spannung berechnen. Obwohl eine solche Spannungsquelle mit der ganzen Einrichtung überhaupt erst bestimmt werden soll, wird dieser zweite Weg

am häufigsten beschritten. Das ist möglich, wenn man z. B. den Wert der EMK eines Elementes ein für alle Mal festlegt und ein solches Element als Normalelement bezeichnet

Hierfür wird heute das international festgelegte Weston-Normalelement verwendet. In den Funktechnischen Arbeitsblättern Ba 21 wird hierüber eingehend berichtet. Seine Spannung ist bei 20°C zu 1,01830 V ermittelt. Diese Spannung wird von der Physikalisch-Technischen Bundesanstalt in Braunschweig (PTB) genau gemessen und auf einem Prüfschein, der jedem Element beigegeben ist, beglaubigt. Die EMK bleibt über Jahre, ja über Jahrzehnte hinaus konstant, wenn dem Element kein größerer Strom als kurzzeitig 10-4 A entnommen wird.

Der in unserem Beispiel aus  $R_1$  und  $R_2$  bestehende Spannungsteiler wird in der Praxis aus meist fünf Dekaden gebildet, die aus Präzisions-Kurbelwiderständen bestehen. An ihm lassen sich dann Spannungen mit fünf geltenden Stellen abgreifen; die sechste Stelle wird häufig durch Interpolation des Galvanometerausschlages bestimmt.

Ferner ist ein solcher Spannungsteiler so eingerichtet, daß der Gesamt-Ersatzwiderstand immer einen konstanten Wert behält, so daß sich der fließende Strom bei einem Schalten der Dekaden nicht verändert. Weiterhin arbeitet man mit einem Hilfselement, das anfänglich mit dem Normalelement verglichen wird und dieses dann vertritt, so daß das Normalelement selbst geschont wird. Eine solche Meßeinrichtung, bestehend aus dem beschriebenen Spannungsteiler. dem Normalelement und dem Hilfselement sowie dem Galvanometer und allen nötigen Zusatzeinrichtungen wird Kompensator genannt; das Arbeiten mit diesem Gerät soll nun an Hand einer ausgeführten Schaltung beschrieben werden.

#### 3.2 Beispiel eines ausgeführten Kompensators

Mit Hilfe von Bild 9 soll nun ein vollständiger Kompensator besprochen werden. Dies ist die sehr einfache und übersichtliche Schaltung nach Feußner, die aus fünf Widerstandssätzen besteht. Die Sätze II, III und IV werden von Doppelkurbeln bestrichen, die jeweils zwei Einzelwiderstände des jeweiligen Satzes herausgreifen. Diesen zwei Einzelwiderständen liegt nun der gesamte folgende Satz parallel; dabei sind die Werte so gewählt, daß der Widerstand zwischen den beiden Kontakten einer Doppelkurbel gleich einem Teilwiderstand ihres Widerstandssatzes ist. So beträgt z. B. der Widerstand, der von Kurbel IV herausgegriffen wird, 8 Ω. Diesem Widerstand liegt der Satz V mit  $10 \cdot 0.8 = 8 \Omega$  parallel, so daß zwischen den Kontakten der Kurbel IV tatsächlich ein Widerstand von  $4\Omega$  herrscht und der gesamte Satz IV aus  $10 \cdot 4 = 40 \ \Omega$ besteht. Dieser wiederum ist zwei Widerständen zu je 20  $\Omega$  des Satzes III parallelgeschaltet usw. Es kommt nicht darauf an, daß die Widerstände in Zehnerpotenzen gestuft sind, sondern nur darauf, daß man die an ihnen abfallenden Spannungen in Zehnerstufen abgreifen kann. Somit ergibt sich der Gesamtwiderstand des Kompensators zu 11 000 Ω. Er bleibt bei allen Kurbelstellungen unverändert und damit auch der einmal eingestellte, von dem Element En gelieferte Hilfsstrom.

An den Klemmen n-n ist das Normalelement angeschlossen. Man bringt nun die Kurbeln des Kompensators in die Stellung, die der Spannung des Normalelementes (z. B. 1,01835 V) entspricht, indem man folgende Einstellung vornimmt: Kurbel I auf 10, Kurbel II auf 1, Kurbel III auf 8, Kurbel IV auf 3, Kurbel V auf 5.

(In der Praxis sind natürlich die Anschlüsse des Widerstandssatzes I vertauscht, so daß die Bezifferung rechtsläufig bei 0 beginnend und bei 10 endend zu lesen ist.) Schließt man nun den Schalter S 1, dann wird das Galvanometer G einen Ausschlag zeigen.

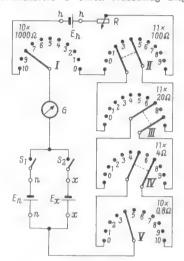



Bild 9. Schaltung des Feußner-Kompensators

Man verändert nun den Einstellwiderstand R so lange, bis dieser Ausschlag zu Null wird. Dann fließt ein Hilfsstrom von genau 0,1 mA, und die Summe der Spannungen an den eingeschalteten Widerständen ist gleich der Spannung des Normalelementes. Dieses kann nun wieder abgeschaltet werden und wird nur gelegentlich, mindestens aber vor jeder neuen Inbetriebnahme des Kompensators, zur Kontrolle der richtigen Einstellung von R herangezogen.

An die Klemmen x – x kann nun eine beliebige Spannung bis 1,1 V angeschlossen und gemessen werden, indem der Kompensator auf Stromlosigkeit des Galvanometers G eingestellt wird. Es gibt Einrichtungen, die den Hilfsstrom auf 0,01 mA oder 0,001 mA verringern und so ein genaues Messen von Spannungen bis 0,11 bzw. 0,011 V ermöglichen; ferner solche, mit der größere Spannungen als 1,1 V gemessen werden können; hierüber wird in dem Abschnitt 6,2 berichtet werden.

Als Hilfsstromquelle Eh verwendet man zweckmäßigerweise eine Zelle eines Sammlers, da diese von allen derartigen Stromquellen die Spannung am besten konstant hält. Legt man hierfür eine Zellenspannung von 1,8...2,2 V zugrunde, dann muß R einen Wert von 7000...11 000 Q haben, um den Hilfsstrom auf 0,1 mA zu begrenzen. Am besten wird er aus einem festen und einem veränderlichen Teil von je 6000 Ω zusammengesetzt, um den erforderlichen Einstellbereich sicher zu erfassen. Bei Verwendung eines Trockenelementes von 1,5 V oder einer Stahlzelle von 1,2 V läßt sich die Größe von R leicht nach dem Ohmschen Gesetz berechnen. Von dem Ergebnis muß natürlich der Kompensatorwiderstand von 11 000 Ω, der ja schon vorhanden ist, abgezogen werden.

#### 3.3 Strommessungen

Strommessungen größter Genauigkeit sind möglich, indem man den zu messenden Strom durch einen genau bekannten Widerstand schickt und den daran entstehenden Spannungsabfall kompensiert. Die Stromstärke ergibt sich dann sofort nach dem Ohmschen Gesetz. Am günstigsten ist es,

#### Für den jungen Funktechniker

Normalwiderstände zu verwenden, deren Wert 0,1, 1, 10  $\Omega$  usw. beträgt, um sich die Rechnung zu vereinfachen. Über den ungefähren Wert des zu messenden Stromes muß man sich jedoch im Klaren sein, denn die Größe des Normalwiderstandes muß so gewählt werden, daß man mit dem entstehenden Spannungsabfall im Meßbereich des Kompensators liegt. Die folgende Tabelle nennt die zu den verschiedenen Strombereichen gehörenden Werte des Normalwiderstandes, bezogen auf einen Meßbereich des Kompensators von 1,1 V:

| Strom      | Normalwiderstand |
|------------|------------------|
| 0,1 1,1 mA | 1000 Ω           |
| 1 11 mA    | 100 $\Omega$     |
| 10110 mA   | 10 Ω             |
| 0,1 1,1 A  | 1 Ω              |
| 1 11 A     | 0,1 Ω            |
| 10110 A    | 0,01 Ω           |

Die Herstellung eines Normalwiderstandes wird in Abschnitt 5.1 ausführlich beschrieben werden.

#### 3.4 Widerstandsmessungen

Um den Wert eines unbekannten Widerstandes  $R_{\rm X}$  genau zu bestimmen, schaltet man diesen mit einem Normalwiderstand  $R_{\rm R}$  in Reihe und schickt durch beide einen beliebigen, aber konstanten Strom. Nun mißt man mit dem Kompensator einzeln die Spannungsabfälle an den beiden Widerständen. Bezeichnet man den Spannungsabfall an  $R_{\rm R}$  mit  $U_1$  und den Spannungsabfall an  $R_{\rm R}$  mit  $U_2$ , dann gilt die Beziehung

$$\frac{R_{\rm R}}{U_1} = \frac{R_{\rm X}}{U_2} \tag{23}$$

oder nach  $R_x$  aufgelöst  $R_x = R_n \cdot \frac{U_2}{U_1}$  (24)

#### 3.5 Kompensatorschaltungen

Die besprochene Schaltung nach Feußner hat den schon erwähnten Vorteil der guten Übersichtlichkeit. Um die Frage zu klären, welchen Einfluß der Kontaktübergangswiderstand der Kurbeln auf die Genauigkeit der Messung hat, stellt man (vgl. Bild 10) fol-

Bild 10. Zum Einfluß der Kurbelkontaktwiderstände (k = Übergangswiderstände)

gende Überlegungen an: Der Übergangswiderstand liegt in Reihe mit dem folgenden Widerstandssatz. Er beträgt bei guten Kompensatoren weniger als 1 m $\Omega$  (Milliohm), d. h. bei zwei Kontaktstellen 2 m $\Omega$  in Reihe mit 8  $\Omega$  (wenn man den letzten Widerstandssatz betrachtet). Das entspricht einem Fehler von etwas über 0,1% genau eingestellt sind, kann dieser Fehler vernachlässigt werden.

Am Übergang der Kurbel V tritt er überhaupt nicht auf, da diese ebenso wie Kurbel I bei abgeglichenem Kompensator stromlos ist. Bei den Sätzen II und III ist er sehr gering, da ihr Widerstand 5- bzw. 25mal größer als der von Satz V ist. Um auf den späteren Abschnitt 6.1 vorzugreifen, sei bemerkt, daß man auch bei selbstgebauten Kurbelkontakten den Übergangswiderstand leicht zwischen 1 und 5 m $\Omega$  halten kann. Zum Vergleich sei erwähnt, daß ein Wert von 5...10 m $\Omega$  dem Übergangswiderstand einer normalen Steckverbindung entspricht. Der Fehler kann auch hier vernachlässigt werden.

Trotzdem hat man Schaltungen erdacht, die auch diesen Fehler weitgehend unterdrücken, wie z. B. beim Dießelhorst-Kompensator nach Bild 11. Hier sind die zwischen den Sätzen liegenden Widerstände höherohmig, so daß der Einfluß der Übergangswiderstände unwesentlich bleibt. Wie man sieht, ist dieser Kompensator besonders niederohmig; er ist für die Messungen von Thermospannungen gedacht. Näheres über diese Schaltung ist im ATM (Archiv für technisches Messen), Blatt 931-1 zu finden.

Eine eingehendere Besprechung ist die Schaltung nach Raps wert, die in Bild 12 wiedergegeben ist. Einem Widerstand der Tausender-Dekade liegt die ganze Hunderter-Dekade parallel und einem Widerstand der Zehner-Dekade die ganze Einer-Dekade. Die angegebenen Dekadenwerte sind jedoch nur die Ablesewerte. Die wirklichen Widerstände verteilen sich dagegen wie folgt auf die einzelnen Kurbelsätze:

> : 11 × 1000 K<sub>II</sub> : 9 × 1000 Ω  $K_{\rm III}$  : 10  $\times$ 10 Ω K<sub>IV</sub> : 9 × K<sub>V</sub> : 10 × 10 Ω 0.1 Ω

fen wir uns hier wohl schenken. Kritisch wird es allerdings bei Kurbel V, wo ein Übergangswiderstand von 1 mΩ bereits einen Fehler von 1% darstellt. Obwohl diese Kurbel die letzte Stelle angibt und der Fehler, gemessen am Gesamtwert der Meßgröße, immer noch sehr gering ist, soll man bei ihrer Herstellung sehr sorgfältig ver-

Ein weiterer Vorteil dieser Schaltung ist, daß in ihr nur drei verschiedene Widerstandswerte vorkommen. Bedenkt man, daß es heute bereits Meßwiderstände mit 0,1 % Toleranz im Handel gibt, dann wird man nur die 0,1-Q-Widerstände der fünften Dekade und allenfalls noch die 10-Ω-Widerstände der Sätze III und IV selbst herstellen und die 1000-Ω-Widerstände kaufen. Wie man sieht, kommt diese Schaltung dem Praktiker sehr entgegen, weshalb sie auch die Grundlage des noch zu beschreibenden Selbstbau-Kompensators sein soll.

Die Einstellung des exakten Hilfsstromes geschieht folgendermaßen: Parallel zum Normalelement liegt ein Widerstand von 10 190 Ω, dessen letzter Teil von 10 Ω veränderlich ist und eine Skala trägt. An ihm wird der 10 000fache Wert der auf dem Prüf-

Links: Bild 11. Schaltung des Dießel-

ligen Zustand belassen kann und nur den Umschalter zu betätigen braucht.

Um den Zusammenhang zwischen Einstellung und Ablesung noch etwas zu verdeutlichen, ist in Bild 15 der Kompensator nochmals stark vereinfacht wiedergegeben. In Schalterstellung a ist:

$$E_n = E_h \cdot \frac{R_2'}{R_1 + R_2 + R_v}$$
 (25)

In Schalterstellung b wird mittels R<sub>1</sub>' die zu messende Spannung Ex kompensiert, und es gilt

$$E_{x} = E_{h} \cdot \frac{R_{1}'}{R_{1} + R_{2} + R_{v}}$$
 (26)

Aus den Gleichungen (25) und (26) bekommt man

$$E_{x} = E_{n} \cdot \frac{R_{1}'}{R_{2}'} \tag{27}$$

Hierbei bedeutet R1' den zu Ex (und dem Galvanometer) parallelen Widerstand und Ro' den der Spannung des Normalelementes entsprechenden Widerstand. Dieser ist jedoch zahlenmäßig gleich En, so daß man erhält

$$E_{x} = R_{1}' \tag{28}$$

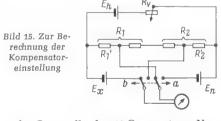
Hierbei ist nur noch das Komma zu berücksichtigen; von dem erhaltenen Wert sind vier Stellen abzustreichen.

Betrachtet man im Anschluß an diese Überlegungen noch einmal Bild 13, dann kann man Ex nach der gezeichneten Einstellung berechnen. Man transformiert die beiden aus 5000  $\Omega$ , 4000  $\Omega$  und 1000  $\Omega$  sowie aus 30  $\Omega$ , 60  $\Omega$  und 10  $\Omega$  bestehenden Widerstandsdreiecke zunächst in äquivalente Sternschaltungen und findet, daß man den 1000- $\Omega$ -Widerstand durch 500  $\Omega$  und 400  $\Omega$ zu ersetzen hat, zwischen denen über einen weiteren, wertmäßig ja nicht interessanten Widerstand die Abzweigung zum Galvanometer abgeht. Auf der rechten Seite sind 3  $\Omega$ 



Offensichtlich ändert sich der Gesamtwiderstand mit der 1/10- $\Omega$ -Dekade. Die Änderung kann iedoch im Höchstfalle nur 1 Ω. d. h. bei 11 000 Ω Gesamtwiderstand höchstens 0.01 % betragen. Die Schaltung des Einstellungsbeispiels nach Bild 12 zeigt Bild 13.

Bild 12. Schaltung des Raps-Kompensators


102

Für denjenigen, der einen Kompensator selbst bauen möchte, bietet diese Schaltung mehrere Vorteile. Obwohl auch hier, wie beim Feußner-Kompensator, eine Messung auf fünf Stellen (bei Werten, die mit 1,0 oder 10 anfangen, sogar auf 6 Stellen) gemacht werden kann, sind nur zwei Doppelkurbeln erforderlich, was eine Erleichterung der mechanischen Arbeit bedeutet. Über die Kontaktwiderstände ist zu sagen, daß sie entsprechend dem Feußner-Kompensator bei den Kurbeln II und IV überhaupt nicht berücksichtigt zu werden brauchen. Bei Kurbel III sind es, schlecht gerechnet, 10 m $\Omega$  in Reihe mit 90 Ω, also etwas mehr als 0,1 % o. Dieser Wert wurde bereits bei einer industriemäßigen Ausführung des Feußner-Kompensators zugelassen. Bei Kurbel I liegt der Übergangswiderstand sogar mit 9000 $\Omega$  in Reihe; eine Nachrechnung des Fehlers dür-

schein angegebenen Spannung des Normalelementes (unter Berücksichtigung der herrschenden Raumtemperatur) eingestellt. (Man lasse sich von dieser zunächst falsch erscheinenden Formulierung nicht verwirren; bei der hier beschriebenen Art von Messungen werden ja stets Widerstände eingestellt, und der Ablesewert wird nachher mit Volt bezeichnet.)

Man bringt dann den Umschalter des Gal-

vanometers in Stellung a und stellt mit Hilfe von Rv den fließenden Strom so ein, daß die Spannung des Normalelementes kompensiert wird. Diese Schaltung ist in Bild 14 noch einmal vereinfacht herausgezeichnet, wobei die nicht bezeichneten Widerstände die Kurbelsätze I, III und V darstellen. Man erkennt, daß bei Stromlosigkeit des Galvanometers die an den zu G und En parallelliegenden Widerständen abfallende Spannung gerade gleich der Spannung des Normalelementes ist. Nun wird der Umschalter in Stellung b gebracht, und die Messung von  $E_x$  kann erfolgen. Diese Schaltung bietet den Vorteil, daß man, um die Einstellung von R<sub>v</sub> zu überprüfen, die Stellung des Kompensators in ihrem jewei-



und 6  $\Omega$  anstelle der 10  $\Omega$  zu setzen. Nun erhält man für den zu Ex parallelen Widerstand:  $R_{1}' = 6000 + 400 + 60 + 3 + 0.2 =$ = 6463,2  $\hat{\Omega}$ . Dieses Ergebnis, mit 10<sup>-4</sup> multipliziert, ergibt Ex, nämlich 0,64632 V, und das entspricht auch der in Bild 12 gezeigten Einstellung.

Es sei noch darauf hingewiesen, daß der zu  $E_h$  parallele Widerstand 21 190  $\Omega+R_v+R_{v^{'}}$  beträgt, wie sich aus Bild 13 entnehmen läßt. Um den erforderlichen Hilfsstrom von 0,1 mA zu erzeugen, ist also ein Eh von mindestens 2,12 V erforderlich. Man wird somit zu zwei Sammlerzellen zu je 1,2 oder 2 V oder zu zwei Elementen zu je 1,5 V greifen und den Einstellwiderstand, bestehend aus dem festen Teil Ry' und dem veränderlichen Teil R<sub>v</sub>, entsprechend dimensionieren, wie es bereits beim Feußner-Kompensator beschrieben wurde.

Damit wären wir am Ende der theoretischen Betrachtungen angelangt, wie sie in diesem Rahmen zum Thema Feinmeßtechnik gemacht werden können. Die folgenden Abschnitte werden sich ausführlich mit der Beschreibung des Selbstbaues von feinmeßtechnischen Geräten befassen.

Weitere Teile folgen

Eh

# Fünktechnische Arbeitsblätter Schallfeldgrößen

DK 534.611.081.1

## Ma 41

2. Ausgabe 3 Blätter

#### A. Grundbegriffe

Schall. Mechanische Schwingungen und Wellen eines elastischen Mediums im Frequenzbereich des menschlichen Hörens (16 Hz bis 20 000 Hz).

Ultraschall. Schallfrequenz liegt oberhalb 20 000 Hz.

Infraschall. Schallfrequenz liegt unterhalb 16 Hz (Erdbebenwellen, Gebäudeschwingungen).

Bezüglich des Mediums unterscheidet man

Luftschall, Körperschall und Wasserschall

(Gase) (Flüssigkeiten).

Ton. Schallschwingung mit sinusförmigem Verlauf.

Tongemisch. Gemisch aus Tönen beliebiger Frequenzen.

Klang. Aus harmonischen Teiltönen zusammengesetzter Schall. Die Frequenzen der Teiltöne stehen in ganzzahligem Verhältnis zueinander; Grundton + Obertöne.)

Klanggemisch. Aus Klängen mit Grundtönen beliebiger Frequenzen zusammengesetzter Schall.

Geräusch. Tongemisch, das sich aus sehr vielen Einzeltönen mit Frequenzen zusammensetzt, die nicht in ganzzahligem Verhältnis zueinander stehen. (Kontinuierliches Frequenzspektrum.)

Knall. Schallstoß kurzer Dauer und meist großer Schallstärke.

#### B. Das Schallfeld

Schallfeld. Der mit Schallenergie erfüllte Raum in der Umgebung einer Schallquelle. Es interessiert insbesondere das Schallfeld in Luft.

Schallwelle ist eine mit Schallgeschwindigkeit sich fortpflanzende Folge von Verdichtungen und Verdünnungen (Druckschwankungen) im Medium (meist Luft), die mit Verschiebungen der (Luft-)Schichten längs der Fortpflanzungsrichtung verbunden sind. Diese Schichten führen Schwingungen um ihre Ruhelage aus.

Longitudinalwellen (Gase, Flüssigkeiten). Für die Ausbildung der Schallwelle ist die Elastizität maßgebend. In Gasen und Flüssigkeiten gibt es nur die Volumenelastizität, es können nur Longitudinalwellen (Längswellen, Druckwellen) auftreten.

Transversalwellen (feste Körper). Feste Körper weisen außerdem eine Formelastizität auf, es können also außer den Längswellen auch Transversalwellen (Querwellen) und / oder Biege- und Torsionswellen auftreten.

(Stimmgabel: Gebogener Stab in Transversalschwingungen.)

Ausbreitung. Die Schallwellenbewegung breitet sich nach den drei Raumkoordinaten gradlinig mit gleicher Geschwindigkeit aus. Daher liegen die Punkte gleicher Phase (z. B. Wellentäler) auf konzentrischen Kugelflächen, deren gemeinsamer Mittelpunkt die Schallquelle selbst ist.

Kugelmellen. In größerer Entfernung (bei großem Kugelradius) können diese Kugelflächen praktisch als eben angesehen werden, da ihre Krümmung nur noch gering ist.

Ebene Wellen. In Entfernungen, die größer als die Schallwellenlänge sind, ist es statthaft, die Kugelwelle als ebene Welle zu betrachten.

In der Schallwelle steckt ein Energieinhalt, der durch sie übertragen wird; die Materieteilchen bleiben im Mittel an ihrem Ort und schwingen um ihre Mittellage hin und her.

#### Die wichtigsten Schallfeldgrößen

sind

Die Frequenz 
$$\left( \text{Hz}, \frac{1}{\text{sec}} \right)$$
.

Häufigkeit von Verdichtung und Verdünnung je Sekunde. Sie ist ein eindeutiges Maß für die Tonhöhe.

Die Fortpflanzungsgeschwindigkeit (m/sec), Schallgeschwindigkeit (c).

Die folgenden Formeln gelten für kleine Amplituden und Longitudinalwellen; für sehr große Schallstärken gelten andere Gesetze.

Die Schallgeschwindigkeit ist abhängig von der Dichte  $\varrho$  und der Elastizität E des Mediums, in dem sich das Schallfeld befindet (Newton).

Feste Körper.

$$\begin{bmatrix} c = \sqrt{\frac{E}{\varrho}} \\ [cm/sec] \end{bmatrix} E = Elastizit "atsmodul" \left[ \frac{g}{cm \, sec^2} \right]$$

$$\varrho = Dichte \qquad \left[ \frac{g}{cm^3} \right]$$

Eisen: 
$$\varrho = 7.8 \frac{g}{cm^3}$$
,  $E = 2 \cdot 10^9 \cdot 981 \frac{g}{cm sec^2}$ .

Tabelle 1. Schallgeschwindigkeiten in verschiedenen Stoffen

| - 1 |           |              |       |        |                 |
|-----|-----------|--------------|-------|--------|-----------------|
|     | Eisen     | c = 5100     | m/sec | Nickel | c = 4900  m/sec |
|     | Messing   | c = 3500     | m/sec | Silber | c = 2700  m/sec |
| 1   | Alumin.   | c = 5100     | m/sec | Blei   | c = 1300  m/sec |
| 1   | Holzfaser | c = 30004000 | m/sec | Zink   | c = 3900  m/sec |
| 1   | Kupfer    | c = 3600     | m/sec | Zinn   | c = 2600  m/sec |
| 1   |           |              |       | Glas   | c = 5000  m/sec |
| 1   |           |              |       |        |                 |

Flüssigkeiten. An die Stelle des Elastizitätsmoduls tritt bei Flüssigkeiten der Kehrwert der Kompressibilität k:

$$\begin{bmatrix} c = \sqrt{\frac{1}{k \, \varrho}} & k = Kompressibilit at & \left[ \frac{cm \, sec^2}{g} \right] \\ [cm/sec] & \varrho = Dichte & \left[ \frac{g}{cm^3} \right]$$

Wasser von 10° C 
$$k = 47 \cdot \frac{1}{981} \cdot 10^{-9}$$
,  $\varrho = 1$  c = 1440 m/sec bei 20° C c = 1480 m/sec Salzwasser, 15 % c = 1530 m/sec [Chlornatriumlösung]

Gase. An die Stelle des Elastizitätsmoduls tritt der Gasdruck P.

Näherungsformel: 
$$c = \sqrt{\frac{P}{\varrho}}$$
.

Die hiernach errechneten Werte sind zu klein.

Grund: Bei der Verdichtung der Luftschichten tritt eine Erwärmung auf, die infolge der schnellen Schallschwingungen nicht rasch genug ausgeglichen wird. Die Spannkraft der Luft wächst bei der Verdichtung schneller als nach dem Boyleschen Prinzip (welches für konstante Temperatur gilt). Diese Tat-

sache findet in der folgenden Formel Berücksichtigung durch den Faktor, der das Verhältnis der Wärmekapazität des Gases für konstanten Druck (cp) und für die Wärmekapazität des Gases für konstantes Volumen (cv) darstellt.

$$\begin{array}{c} c = \sqrt{\frac{P}{\varrho} \cdot k_1} \\ \text{(cm/sec)} \end{array} \begin{array}{c} P = Gasdruck \\ \varrho = Dichte \ des \ Gases \ \left[\frac{g}{cm^3}\right] \\ k_1 = \frac{c_p}{c_v}^1 \end{array}$$

Luft: 
$$P = 76 \cdot 13.59 \cdot 981 = 1013000 \text{ [g/cm} \cdot \text{sec}^2\text{]}$$

$$(\rho \text{ v. Quecksilber})$$

$$\rho = 0.001205 \text{ [g/cm}^3\text{]}$$

$$k_1 = 1.40$$

$$c = 343 \text{ m/sec}$$

Schallgeschwindigkeit in anderen Gasen ist praktisch weniger wichtig.

> Stickstoff (760 Torr, 20° C) c ~ 338 m/sec Wasserstoff (760 Torr, 20° C) c  $\sim$  1300 m/sec (760 Torr, 20°C) c  $\sim$  970 m/sec.

Ungefähre Werte für andere Gase erhält man, indem man den Wert für Luft durch die Quadratwurzel aus der Dichte des Gases dividiert. k1 ist nämlich auch bei anderen Gasen nicht sehr verschieden von 1,4. (Maximale Schwankung etwa 1,2...1,7.)

Änderungen der Schallgeschwindigkeit treten nicht auf bei Luftdruckschwankungen, da Luftdruck und  $\varrho$  sich gleichzeitig

ändern,  $\frac{P}{\rho}$  bleibt konstant.

Dagegen ändert sich die Schallgeschwindigkeit bei Temperaturschwankungen:

Temperaturabhängigkeit der Schallgeschwindigkeit in Luft:

$$c = 331 \sqrt{1 + \frac{T}{273}} = 331 \sqrt{1 + 0.00367 T}$$
 T in ° C.

Gesteigerte Feuchtigkeit der Luft vergrößert ebenfalls die Schallgeschwindigkeit ein wenig.

Wellenlänge. Die Wellenlänge (Abstand zwischen zwei aufeinanderfolgenden Punkten gleicher Phase, z. B. zwei Punkten maximaler Verdichtung) errechnet sich nach der bekannten Formel

$$\begin{array}{|c|c|} \hline \lambda = \frac{c}{f} & c & in \frac{m}{sec} \\ (m) & f & in Hz & \left(\frac{1}{sec}\right). \end{array}$$

Tabelle 2. Schallwellenlängen für verschiedene Frequenzen (c = 343 m/sec)

| - 1 |                        |       |      |      |      |      |       |         |        | 16 000  |        |
|-----|------------------------|-------|------|------|------|------|-------|---------|--------|---------|--------|
|     | $\lambda_{\mathrm{m}}$ | 21,40 | 6,86 | 3,43 | 0,78 | 0,34 | 0,114 | 6,86 cm | 4,3 cm | 2,14 cm | 1,7 cm |

<sup>&</sup>lt;sup>1</sup>) Anmerkung: Da das Verhältnis  $\frac{c_p}{c_v}$  schwieriger zu bestimmen ist als die Schallgeschwindigkeit, hat man oft umgekehrt  $\frac{c_p}{c_{-}}$  aus dieser berechnet.

Schalldruck (p). Praktisch am meisten gebrauchtes Maß für die Stärke eines Schallfeldes.

Die in Bewegung befindliche Luft übt auf eine senkrecht zur Ausbreitungsrichtung stehende Fläche einen Wechseldruck aus, den Schalldruck.

Einheit des Schalldruckes 1 b (Bar) 
$$= 10^6 \, \mathrm{dyn/cm^2} \, (\sim 1 \, \mathrm{at\ddot{u}})$$
 Gebräuchliche kleinere Einheiten 1 mb (Millibar)  $= 10^3 \, \mathrm{dyn/cm^2}$  1  $\mu \mathrm{b} \, (\mathrm{Mikrobar}) = 1 \, \mathrm{dyn/cm^2}$ 

Eben noch wahrnehmbar: 0,002 µb.

(Leises Blätterrauschen: etwa 3 µb; obere Hörgrenze: 1 mb.)

Schallschnelle (v). Gemessen in cm/sec. Wechselgeschwindigkeit eines schwingenden Teilchens.

Schallausschlag (a). Gemessen in cm. Auslenkung eines schwingenden Teilchens aus der Ruhelage.

Schallhärte (h). Gemessen in  $\frac{g}{cm^2 sec^2}$ . Das (komplexe)

Verhältnis des Schalldruckes zum Schallausschlag.

Selten angewendeter Begriff.

Beziehungen zwischen Schalldruck und -ausschlag. Der Schalldruck ist direkt abhängig von der Größe der Amplitude, die die Teilchen ausführen.

1. Für ebene Wellen:

$$p = \omega \cdot \varrho \cdot c \frac{a}{\sqrt{2}} \quad \mu \text{ bar}$$

 $\omega = 2 \pi f (Hz)$ 

o = Dichte des Gases

c = Schallgeschwindigkeit in cm/sec

a = Ausschlag (Amplitude) cm,

in Luft:

 $\rho = 1.205 \cdot 10^{-3} \text{ g/cm}^3$ 

c = 343 m/sec

$$p = 183,65 \cdot f \cdot a$$

$$\mathbf{a} = \frac{\mathbf{p}}{183,65 \cdot \mathbf{f}}$$

p in  $\mu$ bar, f in Hz, a in cm.

2. Für Kugelmellen:

Nachdruck verboten!

$$\boxed{\mathbf{p} = \omega \cdot \varrho \cdot \mathbf{c} \cdot (\cos \varphi) \frac{\mathbf{a}}{\sqrt{2}} \mid \mu \text{ bar}}$$

darin: 
$$\cos \varphi = \frac{1}{\sqrt{1 + \left(\frac{\lambda}{2 \pi r}\right)^2}}$$
,  $\tan \varphi = \frac{\lambda}{2 \pi r}$ 

 $\lambda$  = Wellenlänge der Schallschwingung in cm

r = Entfernung des Meßpunktes von der Schallquelle in cm,

für r  $\geq \lambda$  wird  $\cos \varphi$  praktisch gleich 1, es kann dann die Formel für ebene Wellen genommen werden.

In den Formeln ist p der Effektivwert des Schalldruckes, a der Spitzenwert der Amplitude.

#### Die wichtigsten Schallfeldgrößen

(Fortsetzung)

Beziehung zwischen Schallschnelle und Ausschlag

$$v = a \cdot \omega$$
 (cm/sec) (cm) (2  $\pi$  f [Hz])

Spitzenwerte!

Akustischer Widerstand je Flächeneinheit  $(\beta_{nk})$ 

gemessen in 
$$\frac{\text{dyn sec}}{\text{cm}^3} = \frac{\text{g}}{\text{cm}^2 \text{sec}}$$

Das Verhältnis des Schalldruckes zur Schallschnelle in der ebenen Welle. Größe ist allgemein komplex, da zwischen Schalldruck und Schallschnelle ein Phasenunterschied bestehen kann.

Bei ebenen, fortschreitenden Wellen in einem homogenen Mittel wird der Phasenunterschied Null.

Der sich dann ergebende Widerstand wird mit Schallwellenwiderstand (3) bezeichnet.

Schallfluß ( $\Phi$ ) gemessen in  $\frac{\mathrm{cm^3}}{\mathrm{sec}}$  .

Produkt aus Schallschnelle und Strömungsquerschnitt.

Akustischer Widerstand der gesamten Fläche

$$(\mathfrak{Z}_{ak\,(\text{ges})})$$
 gemessen in  $\frac{g}{cm^4\,\text{sec}}$  .

Das (komplexe) Verhältnis des Schalldruckes zum Schallfluß durch diese Fläche. Bei der rechnerischen Behandlung von Resonatoren oder Trichtern manchmal angewendete Größe.

Mechanischer Widerstand (
$$\mathfrak{Z}_{mech}$$
) gemessen in  $\frac{g}{\sec}$  .

Das (komplexe) Verhältnis der antreibenden Kraft zur Schallschnelle. Bei der Berechnung der Wirkungsweise von Lautsprechern, Tonabnehmern usw. eine bequeme Größe.

Schallstärke (I) gemessen in 
$$\frac{g}{\sec^2} = \frac{erg}{cm^2 \sec} = 10^{-7} \frac{Watt}{cm^2}$$

oder Schallintensität. Die in der Zeiteinheit durch die Flächeneinheit hindurchströmende Schalleistung (Energie).

Schalldichte (E)

gemessen in 
$$\frac{g}{\text{cm sec}^2} = \frac{\text{erg}}{\text{cm}^3} = 10^{-7} \frac{\text{Watt sec}}{\text{cm}^3}$$
.

Zeitlicher Mittelwert der räumlichen Dichte der Schallenergie. Ein Begriff, der besonders bei der Behandlung des Schallfeldes stehender Wellen von Bedeutung ist.

Schalleistung (Nak)

gemessen in 
$$\frac{g \text{ cm}^2}{\text{sec}^3} = \frac{\text{erg}}{\text{sec}} = 10^{-7} \text{ Watt.}$$

In der Zeiteinheit durch eine Fläche beliebiger Größe strömende Schallenergie.

#### **Formeln**

( = Spitzenwerte, ohne Bez. = Effektiowerte)

Schalldruck

$$\mu \text{ bar} = \frac{\text{dyn}}{\text{cm}^2} = \frac{\text{g}}{\text{cm sec}^2}$$

$$\text{v in } \frac{\text{cm}}{\text{sec}}$$

$$\beta_{ak} \text{ in } \frac{\text{dyn sec}}{\text{cm}^3}$$

Ebene Wellen:

$$\mathbf{p} = \omega \cdot \varrho \cdot \mathbf{c} \frac{\hat{\mathbf{a}}}{\sqrt{2}} \;\; \mu \; \mathrm{bar}$$

Luft bei 20° C und 760 Torr

$$\left(\varrho=\text{1,205}\cdot\text{10}^{-3}\frac{\text{g}}{\text{cm}^3}\right) \qquad \left(\text{c}=\text{343}\frac{\text{m}}{\text{sec}}\right)$$
 
$$P_{\text{Luft}}=\text{183,7}\cdot\text{f}\cdot\hat{\text{a}} \quad \mu \text{ bar}$$
 
$$P_{\text{Luft}}=\text{v}\cdot\text{41,33} \quad \mu \text{ bar}$$

$$\begin{array}{lll} \omega = 2 \ \pi \ f_{(Hz)} & c = Schallgeschwindig- \\ \varrho = Dichte \ des \ Gases & keit \ in \ \frac{cm}{sec} \\ & in \ \frac{g}{cm^3} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Kugelwellen:

$$p = \omega \cdot \varrho \cdot c \cdot (\cos \varphi) \frac{\hat{a}}{\sqrt{2}} \mu \text{ ba}$$

$$\text{darin: } \cos \varphi = \frac{1}{\sqrt{1 + \left(\frac{\lambda}{2 \pi r}\right)^2}}$$

$$\frac{\lambda}{2 \pi r} = \tan \varphi$$

 $\lambda =$  Wellenlänge der Schallschwingung in cm

r = Entfernung des Meßpunktes von der Schallquelle in cm,

für r $\geq \lambda$  wird  $\cos \varphi$  praktisch gleich 1, es kann dann die Formel für ebene Wellen genommen werden. Ferner, da

$$\varrho \cdot \mathbf{c} = \mathfrak{Z}$$
  $\mathfrak{Z} \text{ in } \frac{\text{dyn sec}}{\text{cm}^3}$   $p = \omega \cdot \mathfrak{Z} \cdot \frac{\hat{\mathbf{a}}}{\sqrt{2}}$   $\mu \text{ bar}$ 

Tabelle 3.

Schalldrücke von Musikinstrumenten in 1 m Abstand

| Schallquelle                  | Maximal-<br>druck | Mittel-<br>werte |
|-------------------------------|-------------------|------------------|
|                               | μ1                | Dar              |
| Pauke                         | 1300              | 100              |
| Orgel, 5 m Abstand            | 100               | 20               |
| Posaune                       | 23                | 7                |
| Flöte                         | 15                | 2                |
| Trompete                      | 55                | 9                |
| Klarinette                    | 25                | 3,5              |
| Klavier, 3 m Abstand          | 25                | 2,5              |
| Orchester, 15 Mann, 2 m Abst. | 90                | 8                |

#### Schallschnelle

$$v = \frac{p}{\beta_{ak}} \quad \frac{cm}{sec} \quad \frac{\beta_{ak} \text{ in } \frac{dyn \text{ sec}}{cm^3}}{p \text{ in } \frac{dyn}{cm^2}}$$

$$v = \frac{\hat{a} \omega}{\sqrt{2}} \quad \frac{cm}{sec} \quad \frac{\hat{a} \text{ in cm}}{\omega = 2 \pi \text{ f (Hz)}}$$

Luft bei 200 C und 760 Torr

$$v = \frac{p}{41,33}$$
  $\frac{cm}{sec}$   $p in  $\mu$  bar$ 

#### Ma 41

Tabelle 4. Schallschnelle in Luft von 20°C und 760 Torr

| Schalldruck p                                                                                     | Schallschnelle v                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| μ bar                                                                                             | cm/sec                                                                                                                                                                                         |
| 0,001<br>0,005<br>0,01<br>0,05<br>0,1<br>0,5<br>1<br>5<br>10<br>50<br>100<br>500<br>1000 = 1 mbar | $2,42 \cdot 10^{-5}$ $1,21 \cdot 10^{-4}$ $2,42 \cdot 10^{-4}$ $1,21 \cdot 10^{-8}$ $2,42 \cdot 10^{-8}$ $1,21 \cdot 10^{-2}$ $2,42 \cdot 10^{-2}$ $0,121$ $0,242$ $1,21$ $2,42$ $12,1$ $24,2$ |

Dynamik der Sprache etwa 0,1 bis 30  $\mu$  bar

Dynamik eines großen Orchesters etwa 0,5 bis 150  $\mu$  bar

#### Schallfluß

Luft

$$\Phi = \mathbf{v} \cdot \mathbf{F}$$
  $\frac{\mathrm{cm}^3}{\mathrm{sec}}$   $\mathrm{v in} \frac{\mathrm{cm}}{\mathrm{sec}}$   $\mathrm{F in} \, \mathrm{cm}^2$   $\mathrm{(Fl\ddot{a}che)}$   $\mathrm{p in} \, \mu \, \mathrm{bar}$   $\mathrm{F in} \, \mathrm{cm}^2$ 

#### Akustischer Widerstand (gesamte Fläche)

$$3_{ak \text{ (ges)}} = \frac{3_{ak}}{F} = \frac{p}{\phi} = \frac{p}{v \cdot F}$$

$$g \text{ cm}^4 \text{ sec}$$

$$p \text{ in } \mu \text{ bar} \qquad v \text{ in } \frac{cm}{\phi} \qquad F \text{ in cm}^2$$

#### Schallausschlag

$$\hat{a} = \frac{v \sqrt{2}}{\omega} \quad cm \quad v \text{ in } \frac{cm}{sec}$$

$$\omega = 2 \pi f \text{ (Hz)}$$

$$\hat{a} = \frac{p \cdot \sqrt{2}}{\omega \, \Im_{ak}} \quad cm \quad p \text{ in } \frac{dyn}{cm^2}$$

Luft bei 20° C und 760 Torr

$$\begin{bmatrix} \hat{a} = rac{p}{184 \cdot f} \end{bmatrix}$$
 cm  $\begin{bmatrix} 3_{ak} & in rac{dyn \ sec}{cm^3} \end{bmatrix}$ 

Größe des Schallausschlages an der unteren Hörschwelle im Frequenzgebiet der höchsten Ohrempfindlichkeit: etwa 10<sup>-8</sup> cm (Atomdurchmesser!).

#### Akustischer Widerstand je cm²

$$\beta_{ak} = \frac{p}{v} \quad \frac{dyn \ sec}{cm^3} = \frac{g}{cm^2 \ s} \quad \frac{p \ in \ \mu \ bar}{v \ in \frac{cm}{sec}}$$
 
$$\beta_{ak} = \frac{p \ V \ 2}{\hat{a} \cdot \omega} \quad p \ in \ \mu \ bar$$
 
$$\hat{a} \ in \ cm$$
 
$$\omega = 2 \ \pi \ f \ (Hz)$$

 $\text{Kugelwellen} \boxed{ \begin{array}{c} \beta_{ak} = \varrho \cdot c \cdot \cos \varphi \end{array} } \stackrel{\text{dyn sec}}{= \text{cm}^3} \qquad \qquad \begin{array}{c} \varrho \text{ in } \frac{g}{\text{cm}^3} \\ \text{c in } \frac{\text{cm}}{\text{sec}} \end{array}$ 

 $\cos \varphi$  siehe unter Schalldruck.

#### Mechanischer Widerstand

$$3_{\text{mech}} = 3_{\text{ak}} \cdot F = \frac{p \cdot F}{v}$$

$$\frac{g}{\text{sec}}$$

$$\frac{g}{\text{sec}}$$

$$\frac{f \text{ in } \mu \text{ bar}}{f \text{ in cm}^2}$$

$$v \text{ in } \frac{cm}{\text{sec}}$$

$$Schallstärke in \frac{erg}{cm^2 sec} = 10^{-7} \frac{W}{cm^2}$$

übrige Einheiten wie vor.

$$\begin{split} \mathbf{I} &= \mathbf{p} \cdot \mathbf{v} \cdot \cos \varphi \\ \mathbf{I} &= \mathbf{v}^2 \cdot \mathfrak{Z}_{ak} \cdot \cos \varphi \\ \mathbf{I} &= \mathbf{v}^2 \, \mathfrak{Z} \cdot \cos^2 \varphi = \mathbf{v}^2 \, \varrho \, \mathbf{c} \, \cos^2 \varphi \\ \mathbf{I} &= \frac{1}{2} \, \widehat{\mathbf{v}}^2 \, \varrho \, \mathbf{c} \, \cos^2 \varphi \end{split}$$

Fortschreitende ebene Wellen:

$$I = \frac{p^2}{\beta} = \frac{p^2}{\varrho \cdot c}$$

Luft bei 200 C und 760 Torr

$$I = rac{p^2}{41,33} \cdot 10^{-7} \, rac{ ext{Watt}}{ ext{cm}^2} = rac{p^2}{413,3} \, rac{\mu W}{ ext{cm}^2} igg] \, ext{p in} \, \mu \, ext{bar}$$

#### Schallwellenwiderstand

(ebene Wellen)

$$\beta = \varrho \cdot c \qquad \frac{\text{dyn sec}}{\text{cm}^8} \qquad \qquad \varrho \text{ in } \frac{g}{\text{cm}^3}$$

Luft bei 20°C und 760 Torr

$$\beta = 41.33 \quad \frac{\text{dyn sec}}{\text{cm}^8}$$

Dieser Wert trägt auch den Namen Akustisches Ohm

Wasser 10° C

$$\beta = 144\,000$$
 dyn sec

Wasserstoff 20° C 760 Torr

$$\beta = 10.9 \frac{\text{dyn sec}}{\text{cm}^3}$$

#### Tabelle 5. Schallstärke in Luft von 200 C und 760 Torr

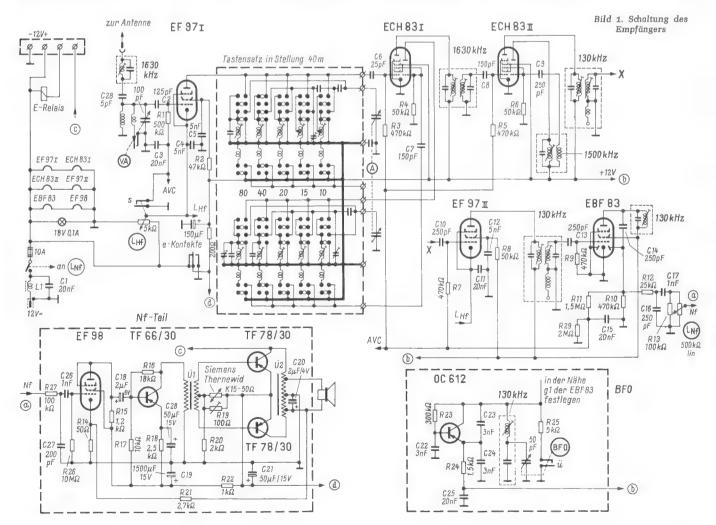
| Schalldruck p  | Schallstärke l         |  |  |
|----------------|------------------------|--|--|
| $\mu$ bar      | μ Watt cm²             |  |  |
| 0,001          | $2,42 \cdot 10^{-9}$   |  |  |
| 0,005          | 6,05 · 10 <sup>8</sup> |  |  |
| 0,01           | $2,42 \cdot 10^{-7}$   |  |  |
| 0,05           | $6,05 \cdot 10^{-6}$   |  |  |
| 0,1            | $2,42 \cdot 10^{-5}$   |  |  |
| 0,5            | $6,05 \cdot 10^{-4}$   |  |  |
| 1              | $2,42 \cdot 10^{-3}$   |  |  |
| 5              | $6,05 \cdot 10^{-2}$   |  |  |
| 10             | 0,242                  |  |  |
| 50             | 6,05                   |  |  |
| 100            | 24,2                   |  |  |
| 500            | 605                    |  |  |
| 1000 = 1  mbar | 2420                   |  |  |

## Mobil-Portabel-Station für fünf Amateurbänder

Teil II. Empfänger und Netzanschlußgerät

Nachdem in der FUNKSCHAU 1961, Heft 18, Seite 475, Schaltung und Bau des Kleinsenders behandelt wurden, folgen nun die Beschreibungen des dazugehörigen Empfängers und des gemeinsamen Netzteiles.

Auch beim Entwurf des Empfängers stand der Wunsch nach größtmöglicher Nachbau-Sicherheit an erster Stelle, Deshalb wurde nach einem fertig erhältlichen Spulenaggregat Umschau gehalten. Die Suche verlief wenig befriedigend, denn noch gibt es keine Spulensätze, die speziell für Mobilempfänger geeignet sind und schon gar nicht solche für reine Transistorbestückung. Der Verfasser wollte aber einen Wechselrichter oder Wandler unter allen Umständen umgehen und entschloß sich daher zu einer Anordnung, bei der im Hf-Teil Niedervoltröhren (für 6 bzw. 12 V Anodenspannung) und im Nf-Teil Transistoren verwendet werden. Trotzdem war das Ergebnis bei der Suche nach geeigneten Spulensätzen mehr als mager, denn schließlich erwies sich nur der Noris-Spulensatz, der eigentlich für einen sehr einfachen Doppelsuper bestimmt ist, als halbwegs geeignet.


Die für Netzröhren bestimmte Originalschaltung (Hf-Vorstufe mit aperiodischem Zwischenkreis, 1. Mischer, 2. Mischer, Zf-Audion, Endröhre) wurde zunächst einmal versuchsweise mit Niedervoltröhren ausgeführt und erprobt. Dabei zeigte sich sofort,

daß ein so aufgebautes Gerät für den Mobilbetrieb viel zu unempfindlich ist. Außerdem störte das Fehlen einer Schwundregelung und eines eigenen Telegrafie-Überlagerers. Weitere Untersuchungen ergaben, daß das Abstimmen des bisher aperiodischen Zwischenkreises die Empfindlichkeit bereits beachtlich in die Höhe treibt, aber die angestrebte hobe Reserve konnte schließlich nur durch zwei zusätzliche Zf-Stufen auf 130 kHz (zweite Zwischenfrequenz) erreicht werden. Zwar bestand in gar keiner Weise der Ehrgeiz, einen Empfänger zu schaffen, der einem stationären Contestgerät nacheifert. Trotzdem kann sich der so entstandene 11-Kreis-Doppelsuperhet mit sechs Röhren und vier Transistoren bezüglich Trennschärfe und Empfindlichkeit überall hören und wegen seiner kompakten Bauweise auch sehen lassen.

#### Die Schaltung

Der Tastensatz, der gleichzeitig die Vorund Oszillatorspulen sowie vier Trimmer trägt, ist in Bild 1 gestrichelt umrahmt dargestellt. Im Gegensatz zur Originalschaltung

des netzbetriebenen kleinen Noris-Doppelsupers wird hier der Vorkreis-Spulenteil als abgestimmter Anodenkreis (= Zwischenkreis) der Vorstufe betrieben. Demzufolge bleiben die Antennenwicklungen (zweite Spulenreihe in der Zeichnung) unbenutzt. Zur gemeinsamen Abstimmung von Zwischen- und Oszillatorkreis dient ein handelsüblicher UKW - Zweifach - Drehkondensator mit 2 × 12 pF. Leider gibt es keine genügend kleinen Dreifachkondensatoren mit  $3 \times 12$  pF, so daß man zu der gleichen Notlösung gezwungen wird, die auch der bekannte Amateurempfänger Mikrohet benutzt: Im Eingang der Vorstufe EF 97 liegt ein sogenannter Fünfbandkreis. Der zugehörige 100-pF-Drehkondensator VA (= Vorkreis-Abstimmung) muß gesondert bedient werden. Zusammen mit der ganz links von ihm gezeichneten Spule überstreicht er das 40- und 80-m-Band. Weil der Kondensator keinen Anschlag besitzt, kann er über 180° hinausgedreht werden. Dabei betätigt er einen Umschaltkontakt, der zur 40-/80-m-Spule eine kleinere parallelschaltet, die die Bereiche 10, 15 und 20 m bestreicht. In der Bedienung wirkt sich dieser zusätzliche Abstimmknopf wenig störend aus, weil seine Einstellung nicht sonderlich kritisch ist und weil sie innerhalb eines Bandes kaum korrigiert werden muß. Bei sehr schwachen



Signalen kann man aber mit diesem Vorkreis das letzte an Empfindlichkeit aus dem Gerät herausholen, so daß man den scheinbaren Schönheitsfehler gern in Kauf nimmt und den Zusatzknopf als genau so selbstverständlich betrachtet, wie den Antennentrimmer eines Hochleistungs - Stationsempfängers.

Im Antennenkreis liegt die 1630-kHz-Sperre, die das Eindringen von Störsendern auf der ersten Zwischenfrequenz verhindert. Das untere Ende des Gitterableitwiderstandes der Vorröhre steht mit der Schwundregelleitung in Verbindung. Außerdem kann die Empfindlichkeit der Vorröhre durch Erteilen einer positiven Katodenspannung aus dem Handregler LHf herabgesetzt werden. Dieses Potentiometer enthält zusätzlich einen Schiebeschalter, der die Schwundregelspannung kurzschließt (Kontaktsatz s). Je nach den herrschenden Betriebsbedingungen können also Hf- und Nf-Verstärkung (letztere mit dem Potentiometer LNf) getrennt eingestellt werden und man kann zusätzlich in jeder Einstellung von Luf den Schwundausgleich (AVC) außer Betrieb

Der Schirmgitterwiderstand R 2 setzt die Verstärkung der Vorstufe absichtlich etwas herab, den ihre Hauptaufgabe ist es, die Schwundregelung zu unterstützen und die Trennschärfe zu erhöhen. Niedervoltröhren haben nämlich eine sehr kurze Regelkennlinie, weshalb man die Regelspannung nicht zu stark bemessen darf und dafür lieber mehr Röhren in die Regelung einbeziehen muß. Aus diesem Grund wird auch der Heptodenteil der ersten Mischröhre ECH 83 mitgeregelt (R 3 an AVC).

Infolge der niedrigen Anodenspannung von 6 bzw. 12 V, die unmittelbar der Wagenbatterie entnommen wird, ist in Oszillatorschaltungen die sonst übliche Parallelspeisung über einen Widerstand nicht möglich. Am Widerstand würde nämlich ein unzulässig hoher Spannungsabfall auftreten. Das ist der Grund, weshalb die im Tastensatz stark gezeichneten Leitungen, die sonst mit Masse in Verbindung stehen, an plus liegen. In dieser Schaltung bilden die Oszillatorspulen den Anodenkreis der Triode in der Mischröhre, Zufällig ergibt es sich, daß auch die oberen Spulen (Zwischenkreis) positive Spannung führen, so daß keiner der acht Lötanschlüsse des Tastensatzes an Masse liegt. Dieser Umstand muß genau beachtet werden. Die stark gezeichneten Leitungen sind im Tastensatz blank ausgeführt. Sie laufen dicht an Befestigungs - Schränklappen vorbei, die nach Einbau des Aggregates mit dem Chassis in Verbindung stehen. An diesen Stellen besteht demnach Kurzschlußgefahr. Am besten ersetzt man vor dem Einbau diese blanken Drähte durch isolierte oder man schiebt passende Isolierschlauch-Stücke darüber.

In der ersten Röhre ECH 83 wird das Signal auf 1630 kHz, also auf eine Frequenz umgesetzt, die am Anfang des MW-Bereiches liegt. Diese etwas unschöne Lösung (Durchschlagsgefahr eines Ortssenders nahe 1630 kHz) wurde bei der Konstruktion des Tastensatzes gewählt, weil er ursprünglich für einen KW-Konverter zum Vorschalten vor normale MW-Rundfunkempfänger bestimmt war. Bei der halbjährigen Erprobung des Empfängers hatte der Verfasser jedoch niemals diesbezüglichen Ärger, obwohl er sein Fahrzeug in 20 m Entfernung neben die Sendeantenne des AFN-Senders Garmisch stellte, der auf 1510 kHz arbeitet.

Über ein Bandfilter gelangt die erste Zwischenfrequenz zur zweiten Mischröhre ECH 83, die auf 130 kHz umsetzt. Der zugehörige 1500-kHz-Oszillatorspulensatz liegt aus den bereits genannten Gründen (Spannungsabfall bei Parallelspeisung) ebenfalls im Anodenkreis des Triodensystems.

Die Rückkopplungsentwicklung im 130-kHz-Bandfilter vor der EF 97 (II) bleibt unbenutzt, sie wird nur bei Anschluß eines Zf-Audions gebraucht. An die schwundgeregelte erste Zf-Stufe (EF 97/II) schließt sich die zweite mit der Verbundröhre EBF 83 an. Diese Röhre wird nicht geregelt, damit immer genügend Richtspannung an der Diodenstrecke verfügbar ist. Das Bandfilter zwischen EF 97 (II) und EBF 83 gehört nicht zum Lieferprogramm des Spulensatzes, es muß zusammen mit einem weiteren, auf das wir gleich zu sprechen kommen, getrennt bestellt werden.

Vom dritten 1630-kHz-Filter wird der Becher entfernt und man sägt sein Isolierrohr, auf dem die Spulen sitzen, so auseinander, daß man aus den verbleibenden Hälften und den zugehörigen Kondensatoren zwei 1630-kHz-Kreise herstellen kann. Der eine davon liegt im Anodenkreis der Röhre EBF 83. Über den Kondensator C 14 gelangt die Zf-Spannung zu einer der beiden Dioden, die am Widerstand R 10 eine Richtspannung aufbaut. Am Spannungsteiler R 11/ R 29 greift man die mit den Kapazitäten C 15 und C 3 gesiebte Regelspannung ab und über das Siebglied R 12/C 16 die Signalspannung. Das Glied C 17/R 13 dämpft unerwünschte Tiefen, während R 27/C 27 überflüssige Höhen abschneidet. So gelangt in den Nf-Teil ein richtig beschnittenes Tongemisch, das in der Transistor-Endstufe auf max. 2 W gebracht im kleinen Gerätelautsprecher einen ganz beachtlich hohen Lautstärke-Eindruck erzeugt.

Der Nf-Teil ist ebenfalls als geschlossene Baugruppe ausgeführt und deshalb in gestrichelter Umrahmung dargestellt. Seine erste Stufe mit der Röhre EF 98 erfüllt zwei Aufgaben: Die Röhre verstärkt nicht nur, sondern sie arbeitet gleichzeitig als Impedanzwandler. Der hochohmige Gitterkreis paßt an den hochohmigen Lautstärkeregler LNf, und der wegen der benutzten Tetrodenschaltung (Gitter 3 an Anode) ziemlich niederohmige Anodenkreis (R 15 = 1,2 k $\Omega$ ) ergibt eine gute Anpassung an den Treiber-Transistor TF 66/30.

Etwas ungewöhnlich ist der Basis-Spannungsteiler geschaltet, denn R 16 liegt statt an Minus am Kollektor des Transistors TF 66. Dadurch wird eine sehr erwünschte Stufenstabilisierung erzielt und der Zwischenübertrager Ü 1 kommt ohne die sonst übliche Emitter-Zusatzwicklung aus. Auffallend sind ferner das scheinbar überbemessene Siebglied R 22/C 19 und der Anschluß des Kondensators C 28 an minus statt

an plus. Diese Beschaltung macht sich bezahlt, wenn der Sender und Empfänger bei Heimbetrieb aus einem Wechselstrom-Netzteil gespeist werden. Ohne besondere Siebungen erzielt man nämlich auf diese Weise eine völlig brummfreie Wiedergabe.

In der Endstufe arbeiten zwei Transistoren TF 78/30 im Gegentakt, deren Ausgangsübertrager Ü 2 nur eine einzige mehrfach angezapfte Wicklung besitzt. Die symmetrisch zur Mitte (= Masse) liegenden 4-Qzapfpunkte speisen den Gerätelautsprecher, während der Abgriff c für den Handhörer hochohmig und unsymmetrisch erfolgt. Der eine Lautsprecheranschluß ist gegen Masse mit dem Kondensator C 20 verblockt, damit keine unerwünschten phasengedrehten Höhen über den Widerstand R 21 in die Gegenkopplung gelangen und diese unstabil machen können.

Ganz unten rechts im Schaltbild ist der ebenfalls als Baugruppe ausgebildete Transistor-Überlagerer (BFO) für Telegrafie und SSB-Wiedergabe gezeichnet. Sein Schwingkreis wird aus der noch übrigen Hälfte des zerlegten 130-kHz-Bandfilters hergestellt. Parallel zum zugehörigen Festkondensator (aus dem Filter entnommen) liegt der eigentliche BFO-Drehkondensator. Auch dieser läßt sich um 3600 drehen, wobei er den Kontaktsatz ü betätigt, der den VFO einund ausschaltet. Mechanisch ist die Anordnung die gleiche wie beim Vorkreis-Drehkondensator. Am heißen Punkt des Kreises ist ein Stück Draht angelötet, dessen anderes Ende in die Nähe des Steuergitter-Anschlusses der Röhre EBF 83 geführt wird. Diese lose Ankopplung genügt, um die BFO-Frequenz einzukoppeln.

Einige Besonderheiten im Stromversorgungsteil verdienen Beachtung: Das Batteriefilter L 1/C 1 hält in sehr starkem Maß Bordnetz-Störgeräusche fern. Die Drossel L 1 besteht aus einem 4 cm langen Kernstück, das vom Stabteil einer Ferritantenne abgesägt wurde (Durchmesser etwa 6...8 mm). Unmittelbar darauf sind 30 Windungen aus 1-mm-CuL-Draht gewickelt. Die Heizfäden der sechs Röhren liegen im Mustergerät in drei Gruppen paarweise in Reihe und parallel, weil mit 12 V gearbeitet wird. Das Skalenlämpchen brennt absichtlich mit Unterspannung, damit es bei nächtlichen Fahrten nicht blendet.

Zum Abschalten des Empfängers beim Senden dient das E-Relais, das zusammen mit den beiden Relais im Sender betätigt wird. Der e-Kontakt unterbricht im Empfänger die Betriebsspannung für die Röhren und Transistoren. Der ganz rechts gezeigte und geerdete Massekontakt hat dabei eine Sonderaufgabe. Beim Umschalten auf Sen-

Daten des Nf-Teiles bei 6- und 12-V-Betrieb

|                        | 6 V                             | 12 V                       |  |  |  |
|------------------------|---------------------------------|----------------------------|--|--|--|
| Ü 1                    |                                 |                            |  |  |  |
| Kern                   | EI 30, Dyn-Bl IV/0,35           | desgl.                     |  |  |  |
| primär                 | 1120 Wdg. 0,1 CuL               | 1300 Wdg. 0,1 CuL          |  |  |  |
| sekundär               | 2 × 188 Wdg. bif. 0,15 CuL      | 2 × 172 Wdg. bif. 0,16 CuL |  |  |  |
| Ü 2                    |                                 |                            |  |  |  |
| Kern                   | EI 42, Dyn-Bl IV/0,35           | desgl.                     |  |  |  |
| 4-Ω-Teil               | 2 × 40 Wdg. bif. 0,6 CuL        | desgl.                     |  |  |  |
| Außenteile             | $2 \times 80$ Wdg. bif. 0,4 CuL | 2 × 140 Wdg. bif. 0,3 CuL  |  |  |  |
| R 16                   | 60 kΩ                           | 18 kΩ                      |  |  |  |
| R 17                   | entfällt                        | 10 kΩ                      |  |  |  |
| R 20                   | 750 Ω                           | 2 kΩ                       |  |  |  |
| Treiber-Transistor     | TF 66                           | TF 66/30                   |  |  |  |
| Ind-Transistoren TF 78 |                                 | TF 78/30                   |  |  |  |

den entlädt er den 150- $\mu$ F-Kondensator über den 200- $\Omega$ -Widerstand, damit der Empfänger nicht "nachklingt". Beim Übergehen auf Empfang muß sich dieser Kondensator erst wieder aufladen. Das dauert den Bruchteil einer Sekunde und der Erfolg ist, daß das Umschalten sich nicht als "Knall" im Lautsprecher bemerkbar macht, sondern daß es weich und trotzdem schnell vor sich geht.

Bei 6-V-Speisung liegen die Röhren-Heizfäden natürlich alle parallel. Ein etwa auftretender geringfügiger Verstärkungsrückgang kann – falls das überhaupt erforderlich erscheint – durch Verkleinern der Widerstände R 2 und R 8 größtenteils ausgeglichen werden. Außerdem ergeben sich Änderungen im Nf-Teil, die aus der Tabelle auf der vorhergeh. S. zu entnehmen sind.

#### Der Aufbau

Die mechanische Konstruktion wurde von dem Wunsch bestimmt, daß der Empfänger die gleichen Abmessungen wie der in Heft 18 beschriebene Sender erhalten sollte. Das wird durch die einigermaßen klobige Ausführung der Drucktasten sehr erschwert. Trotzdem wurde das angestrebte Ziel fast erreicht, nur in der Tiefe ist der Empfänger um einige Millimeter größer ausgefallen. Wer die nötige Geduld aufbringt (der Verfasser hatte sie nicht), kann möglicherweise durch Kürzen der Tastenhebel und durch

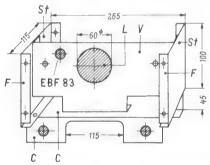



Bild 2. Die Chassis-Konstruktion

Einkitten kleinerer Kunststofftasten den Idealzustand erreichen.

Beim Originalgerät fiel die Bauweise des Empfängereinschubs zwar etwas ungewöhnlich aus, aber dafür ist sie äußerst verwindungssteif. Wenn man nämlich auf eine halbwegs übersichtliche Linearskala Wert legt, bleibt an der nur 15 cm hohen Frontplatte kein Platz mehr zum Dahinterschrauben eines Lautsprechers mit brauchbarem Durchmesser (= Belastbarkeit). Deshalb reicht das eigentliche Chassisblech c gar nicht bis zur Frontplatte (Bild 2). Mit dieser (3 mm Dural) ist es über zwei dreiseitig abgewinkelte Stützbleche St (1,5 mm Aluminiumblech halbhart) verschraubt. Die Verbindung erfolgt mit den Flanschen F. Zwischen den beiden Stützblechen St sitzt ein Versteifungsblech V mit dem Ausschnitt L für den Lautsprecher. V trägt beim Zusammenbau noch eine ganze Reihe von Bauteilen, es ermöglicht eine vorzügliche Raumausnutzung und einen sehr übersichtlichen Aufban.

Beim Betrachten von Bild 3 vermutet man zunächst nicht, daß die Schallaustrittslöcher gar nicht unmittelbar vor der Lautsprechermembran sitzen, sondern daß dieser sich weiter hinten auf dem Blech V (Bild 2) befindet. Trotzdem sieht das Gesicht des Ge-

rätes recht harmonisch aus und die Konstruktion ist sehr praktisch. Nach dem Entfernen der Drehknöpfe läßt sich nämlich die Frontplatte abnehmen (Bild 4), wobei der Empfänger voll betriebsfähig bleibt. Bordnetzstecker, Sicherung, Nf-Regler und Abstimmung sitzen an der

Chassis-Vorderkante, Hf-Regler, EBF 83 und Vorkreisabstimmung am Zwischenblech V und der Transistor-BFO ist an die Platte V so angewinkelt, daß er ein wenig in den Membranraum des Lautsprechers hineinragt. Besser läßt sich der verfügbare Bau-

Aus der Welt des Funkamateurs

raum gar nicht ausnutzen.

Auch beim mechanischen Zusammenbau des Empfängers sollte man die gleichen Vorsichtsmaßregeln wie beim Senderbau beachten: Man bohre nicht wild drauflos, sondern überzeuge sich erst nach dem sorgfältigen Zusammenpassen der einzelnen Bleche davon, daß sich die Maße für die Bohrungen auch im nachgebauten Gerät verwirklichen lassen. Beim Abkanten mit dem Gummihammer ist es nämlich nicht ganz einfach, genau maßhaltig zu arbeiten, so daß die vorgeschlagenen Kontrollen alles andere als Luxus sind.

Am besten beginnt man mit dem Zuschneiden und Bohren der Frontplatte (Bild 5) und richtet sich dann mit allen weiteren Paßarbeiten genau nach dieser. Dann wird das eigentliche Chassisblech C aus Bild 2 zugeschnitten, aber nur der 114 × 98 mm große Ausschnitt (Bild 6) angebracht, in den die Spulen des Tastenaggregates hineinragen. Nach dem Abkanten paßt man dieses Blech zusammen mit den Außenteilen (St von Bild 2) genau ein, wobei an

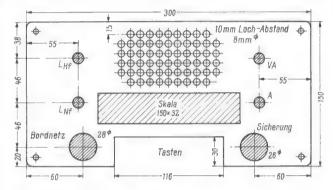



Bild 5. Maße der Frontplatte **▲** Rückseite 154 abkanten 18 ECH 83 I 18 ECH83I 130 114 x 98 22° 22\$ EF 971 36 130kHz Drehkondensator ahkanten 218 Bild 6. Maße des Chassis-♥ Frontseite bleches

1

Bordnetz

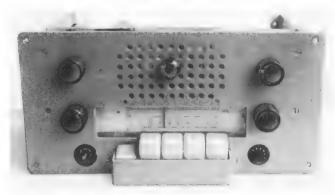



Bild 3. Der Empfänger von vorn

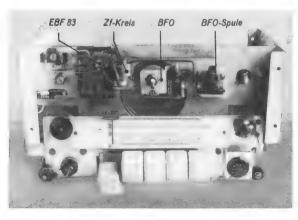
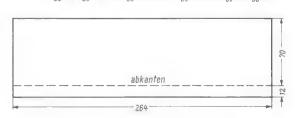
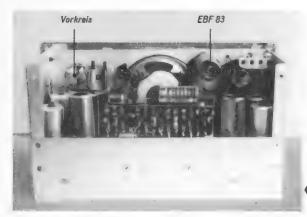




Bild 4. Der Empfänger bei abgenommener Frontplatte

Bild 7. Maße des Skalenbleches






Skala

➂

rung



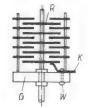
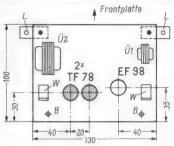




Bild 10. Schaltkontakt am Drehkondensator

Bild 9. Rückansicht des Chassis



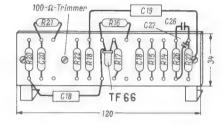



Bild 11. Das Blech mit dem Nf-Teil

Bild 12. Bestückung der Lötösenleiste im Nf-Teil

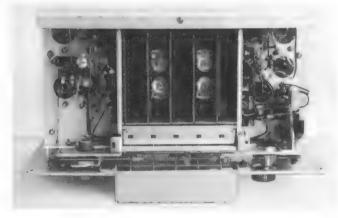
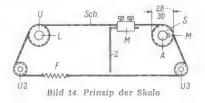



Bild 13. Unteransicht des Chassis


die frontplattenseitige Abkantung ein Stirnblech nach Bild 7 und an die hintere Seite ein Versteifungsblech nach Bild 8 angeschraubt wird. Das Vorderblech nimmt den Bordnetzstecker, das Sicherungselement. den Nf-Regler sowie die Durchführung für den Abstimmknopf und die Skala auf. Dagegen hat das Hinterblech nur die Aufgabe. der ganzen Konstruktion - insbesondere durch das Verschrauben mit den Seitenteilen - die nötige Verwindungssteifigkeit zu geben. Wenn alles zusammengeschraubt ist, überzeugt man sich von den Platzverhältnissen und bringt danach die Bohrungen in den Blechen nach Bild 6 und 7 an. Anschließend wird das Versteifungsblech V (Bild 2) eingepaßt und mit dem Lautsprecher-Ausschnitt versehen. Es 40 mm Abstand von der Frontplatte haben.

Ungewöhnlich ist die Befestigungsart der 2. Zf-Röhre EBF 83, sie sitzt nämlich waagerecht an dem Lautsprecher-Versteifungsblech V aus Bild 2 (vgl. auch Bild 4). Das ist keine Verlegenheitslösung, sondern zwingende Notwendigkeit. Ihr Anodenkreis wird auf diese Weise automatisch durch dieses Blech und die Frontplatte abgeschirmt, außerdem erlaubt die enge Nachbarschaft mit dem Transistor-BFO ein müheloses Einkoppeln der Überlagerungsfrequenz. Der BFO-Drehkondensator sitzt hierauf wurde bereits hingewiesen - an einem Blechwinkel und ragt ein wenig in den Membranraum des Lautsprechers hinein

(vgl. Bild 4). Dieser Winkel trägt seitlich eine Lötösenleiste mit allen BFO-Schaltelementen, und von hier aus führt der bei der Schaltungsbesprechung erwähnte steife Schaltdraht zur Kopplung in die Nähe des Gitteranschlusses der Röhre EBF 83.

Wie die Rückansicht des Chassis (Bild 9) erkennen läßt, haben die beiden Vorkreisspulen (Spulenkörper — Stiefelform Mayer 5 mm  $\phi$ , 80/40 m — 80 Wdg., 20/15/10 m — 30 Wdg.) auf einem Blechwinkel hinter dem Lautsprecherblech Platz gefunden. Zwischen diesem und der Frontplatte ist ein Winkel mit der Antennenbuchse angebracht.

Bild 10 veranschaulicht, wie man nachträglich am Vorkreis- und BFO-Drehkondensator einen Schaltkontakt anbringen kann. K ist ein passend zurechtgebogener Blechstreifen, den man z. B. dem Kontaktsatz eines Relais entnimmt. Er wird mit W an der keramischen Grundplatte vernietet oder verschraubt. Man muß ihn so justieren, daß er mit dem geerdeten Rotor dann Kontakt bekommt, wenn dieser gerade aus dem Statorpaket herausgedreht wird.



Der gesamte Nf-Teil sitzt auf einem besonderen Blech, das nach Bild 11 mit Abstandsrollen über dem Ausschnitt des Tastenaggregates festgeschraubt wird. Hierzu dienen die Befestigungslöcher B und die Bohrungen in den angenieteten Laschen L. Die beiden Winkel W halten eine senkrecht stehende Isolierleiste (Bild 12), die die meisten Schaltelemente aufnimmt. Die beiden Endtransistoren werden kopfstehend befestigt (Anschlußdrähte nach oben) und die Fassung der Röhre EF 98 sitzt nicht im Blech, sondern sie ist unter Zwischenlage von Gummipuffern (Schwingelementen) federnd auf dieses aufgeschraubt. Das erweist sich als zweckmäßig, weil sonst die Röhre bei starken Erschütterungen zur Mikrofonie neigt.

Wie aus der Ünteransicht des Chassis (Bild 13) hervorgeht, ist die Verdrahtung sehr übersichtlich, wozu hier und da einige Lötösenleisten beitragen. Sehr wichtig ist, daß man die etwas lang ausfallende Leitung zum Oszillator-Paket des Drehkondensators durch einen oder zwei keramische Lötstützpunkte so versteift, daß sie auch bei sehr starken Erschütterungen völlig starr bleibt. Infolge der niedrigen Kreiskapazitäten würden wackelnde Drähte unweigerlich zu Fre-

quenzverwerfungen führen.

Für jene Leser, die nur wenig Übung im konstruktiven Gestalten von Funkgeräten haben, sollen hier noch einige Hinweise gegeben werden. Der mitgelieferte Drehkondensator ist mit einem eingebauten Zahnradtrieb versehen, die Achse muß 1,5mal (= 540°) gedreht werden, um den Rotor um 180° zu bewegen. Der Kondensator besitzt also bereits einen Feintrieb, so daß man nur noch für eine entsprechende Skalenanzeige zu sorgen hat. Diese läßt sich nach Bild 14 sehr einfach aufbauen. Auf der Abstimmachse A (= Drehkondensator) wird mit der Madenschraube M ein Seilrad S befestigt, das man sich aus Messing oder Aluminium drehen läßt und dessen eingefräste Nut einen Durchmesser von 30 mm aufweist. Das entspricht bei 1,5 Umdrehungen einem Zeigerweg von rund 140 mm. Über die Achse L des Nf-Lautstärkereglers schiebt man eine Umlenkrolle U etwa der gleichen Abmessungen. Die Zeigerschnur Sch wird zweimal um S geschlungen [Mitnahme-Haftung), über zwei weitere Umlenkrollen U2 und U3 geführt, die am Skalenblech sitzen, und mit der Zugfeder F straff gehalten. Der Zeiger Z besteht aus einem Stück Schaltdraht, das mit Hilfe einer Messingklemme M, die man einer Lüsterklemme entnimmt, auf Sch befestigt wird. Das eigentliche Skalenblatt zeichnet man sauber mit Tusche auf festen Karton. Es wird mit durchsichtigem 2-mm-Kunststoff (z. B. Plexiglas) abgedeckt und auf dem Skalenblech (vgl. Bild 7) mit 2-mm-Schrauben befestigt. Der gleiche Kunststoff deckt den Skalenausschnitt in der Frontplatte (Bild 5) von hinten ab.

Bisher war immer vom Bordnetzstecker die Rede, der am Skalenblech sitzt. Er ist konzentrisch und entspricht der üblichen Auto-Stecker-Norm, die falsche Polung ausschließt. Genauer bezeichnet, müßte man eigentlich von einem Gerätestecker sprechen, denn der Stift sitzt ähnlich auf dem Chassis, wie z. B. die Stecker an einem Bügeleisen. Beim Nachbau wird man aber vergeblich in den Kraftfahrzeug-Zubehör-Handlungen danach fragen, den Auto-Gerätestecker werden nicht hergestellt. Der Verfasser behalf sich mit einem Schnurstecker (zum Anschrauben an ein Kabel), dessen Isolierhülse (Griff) entfernt und durch eine Metallmutter mit dem gleichen Gewinde ersetzt wurde.

Auch beim Einsetzen des Sicherungselementes muß man einige "Klimmzüge"

Bild 15. Der Tasten-Balkon

machen. Schraubt man es nämlich unmittelbar in das Skalenblech, so läßt sich der Kopf, der die Sicherung aufnimmt, nicht mehr durch den Frontplatten-Ausschnitt erreichen. Beim Mustergerät wurde deshalb ein Winkel an das Skalenblech geschraubt, der das Element in 10 mm Abstand von der Frontplatte hält.

Wenn alles zusammengebaut ist, wird man bemerken, daß die Drucktasten ungeschützt aus der Frontplatte herausragen. Ein aus 1,5-mm-Aluminiumblech gebogener "Balkon" nach Bild 15 gibt ihnen den erforderlichen Schutz. Maße wurden in der Zeichnung absichtlich nicht angegeben, weil man diesen Teil aus den schon mehrfach erwähnten Gründen individuell zuschneiden und genau einpassen muß.

Nach erfolgtem Zusammenbau — also wenn alle Bleche genau eingepaßt sind — zerlegt man die Gesamtkonstruktion wieder und verfährt genauso wie beim Sender. Die Frontplatte wandert zusammen mit dem "Tasten-Balkon" in eine Lackier- oder Emaillieranstalt und die Bleche werden sauber geschliffen, geätzt und wieder zusammengesetzt. Die Verdrahtung kann beginnen und sie wird kaum Schwierigkeiten bereiten.

#### Der Abgleich

Die erste Abgleicharbeit erstreckt sich auf den Nf-Teil: Man stellt den Einstellwiderstand R 19 so ein, daß sowohl bei 6- als auch bei 12-V-Auslegung des Empfängers in der Gegentaktstufe 2 × 10 mA Kollektor-Ruhestrom fließen. Dann wendet man sich dem Abgleich im Zf-Teil zu, der rückwärts vom Anodenkreis der Röhre EBF 83 aus nach vorn erfolgt. Die Abgleichfrequenzen entsprechen den Angaben in Bild 1. Beim Hf-Tastensatz muß man einiges beachten und sich an die folgende Tabelle halten:

| leitung    |
|------------|
| V/8A       |
| ا ا        |
| N N        |
| n          |
| <b>1</b> " |
| 1          |

Bild 16. Schaltung des Netzanschlußgerätes

Abgleichfrequenzen

| 20 | m   | 14,0 | MHz | =  | Kern | 14,4 | MHz   | = | Trimmer |
|----|-----|------|-----|----|------|------|-------|---|---------|
| 40 | m   | 7,1  | MHz | =  | Kern |      |       |   |         |
| 15 | m   | 21,2 | MHz | == | Kern |      |       |   |         |
| 10 | m   | 28,5 | MHz | =  | Kern |      |       |   |         |
| RA | 777 | 9.5  | MHZ | _  | Korn | 9.75 | MILIO | _ | Trimmon |

#### Das Netzanschlußgerät

Band

Die Schaltung Bild 16 ist verhältnismäßig einfach ausgefallen. Es zeigt sich nämlich, daß bei 12-V-Betrieb keine Spannungsstabilisierung erforderlich ist. In Stellung Empfang fließen rund 3 A, und die Betriebsspannung beträgt etwa 15 V, was der Bordbatteriespannung bei schneller Fahrt entspricht. Beim Umschalten auf Senden geht die Spannung des Netzgerätes auf 13 V zurück, und zwar bei einer Stromaufnahme von rund 6 A. Das bewegt sich durchaus im Rahmen der schwankenden Bordbatterie-Spannungen.

Ein Netzgerät für 6 V wurde nicht erprobt, aber sinngemäß müßte es so ausgeführt werden, wie es in Bild 17 rechts gezeichnet ist. Der Gleichrichter für 6 V/12 A liegt an einem Netztransformator für 6 bis 7 V, und der Widerstand wird so eingestellt, daß beim Senden und Empfangen etwa gleiche Spannungen anstehen. Der Kontakt n des zusätzlichen Netzteil-Relais N überbrückt beim Senden den Widerstand und hält auf diese Weise die Speisespannung ungefähr konstant. Die Bedienung des Relais N erfolgt über die gemeinsame Relaisleitung der Sende-Empfangsumschaltung.

#### Die Mobilantenne

Sie wurde nach den Angaben von DL 6 JG') gebaut und mit einer Mittel-Ladespule versehen. Selbstverständlich können

Das Mobil-QTC, erschienen im Körner-Verlag, Gerlingen/Stuttgart.

#### Im Muster verwendete Einzelteile

#### Widerstände

0,25 W: je ein Stück 50  $\Omega$ , 1 k $\Omega$ , 1,2 k $\Omega$ , 1,5 k $\Omega$ , 2 k $\Omega$ , 2,5 k $\Omega$  2,7 k $\Omega$ , 5 k $\Omega$ , 10 k $\Omega$ , 18 k $\Omega$ , 25 k $\Omega$ , 47 k $\Omega$ , 3 Stück je 50 k $\Omega$ , 2 Stück je 100 k $\Omega$ , 1 Stück 300 k $\Omega$ , 5 Stück je 470 k $\Omega$ , 1 Stück 500 k $\Omega$ , je 1 Stück 1,5 M $\Omega$ , 2 M $\Omega$ , 10 M $\Omega$ 

#### Kondensatoren

125 V: je ein Stück 5 pF, 25 pF, 125 pF, 2 Stück je 150 pF, 1 Stück 200 pF, 5 Stück je 250 pF, 2 Stück je 1 nF, 3 Stück je 3 nF, 3 Stück je 5 nF, 5 Stück je 20 nF

#### Elektrolytkondensatoren

4 V: 1 Stück 2 μF

6 V: 1 Stück 2 μF

15 V: 2 Stück je 50 μF, 1 Stück 1500 μF

#### Hf-Spuler

Erweiterter Noris-Spulensatz, bestehend aus: Tastenaggregat, Antennenfilter 1630 kHz, Bandfilter 1630 kHz, Oszillatorspule 1500 kHz,

3 Stück Bandfilter 130 kHz zzgl. Spezial-Drehkondensator 2 × 12 pF (W. Conrad, Hirschau/ Opf.)

2 Eingangskreis-Spulen lt. Text, Batteriefilter-Spule lt. Text

#### Drehkondensatoren

Abstimmkondensator 2  $\times$  12 pF (im Spulensatz enthalten), Vor-Kreis-Drehkondensator 100 pF, BFO-Drehkondensator 50 pF

#### Übertrager

2 Übertrager laut Text

#### Röhren

2 Stück EF 97, 2 Stück ECH 83, EF 98, EBF 83 mit Fassungen und Abschirmzylindern (Preh)

#### Halbleiter

OC 612 (Telefunken), TF 66/30 (Siemens), 2 Stück TF 78/30 (Siemens), 1 Stück Thernewid K 15–50  $\Omega$  (Siemens)

#### Potentiometer

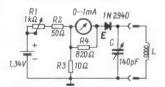
1 Stück 500 k $\Omega$  log. mit Drehschalter, 1 Stück 5 k $\Omega$  mit Schiebeschalter, 1 Stück Einstellregler 100  $\Omega$  (Ruwid)

#### Verschiedenes

7-cm-Lautsprecher (Heco), 5 Stück Drehknöpfe, 1 Sicherungs-Einbauelement (Wickmann), 1 Auto-Bordnetzstecker, 1 Relais mit Umschaltkontakt (Hannes Bauer), div. Kleinteile

#### Aus der Welt des Funkamateurs

mit gleichem Erfolg auch fertig erhältliche Typen (z. B. Heath-Kit) der gleichen Bauweise Verwendung finden. Im Fahrzeug des Verfassers befinden sich unter dem Rücksitz eine Bordnetz-Steckdose für die Stromversorgung, die unmittelbar an die Batterie angeschlossen ist, sowie eine Antennen-Steckdose, von der aus ein abgeschirmtes Kabel zum Antennen-Fußpunkt führt. Zwei mit entsprechenden Steckern bzw. Kupplungen versehene Kabel stellen bei Bedarf die Verbindung zur Mobilstation her. Ein- und Ausbau gehen in Sekundenschnelle vor sich.


Die kleine Station hat sich nicht nur im Mobil- und beim ortsfesten Betrieb über ein halbes Jahr lang gut bewährt, sie übte darüber hinaus einen recht erzieherischen Einfuß aus: Geringe Leistungen (QRP) zwingen den OM zum präzisen Abwickeln seines Funkverkehrs, und mancher, der zu Hause mit 200 W Imput arbeitet, wird überrascht feststellen, daß auch heute noch bei geignetem Verhalten mit kleinen Leistungen verhältnismäßig große Entfernungen überbrückt werden können.

(In Bild 2 des ersten Teiles dieser Arbeit [FUNKSCHAU 1961, Heft 18, Seite 475] ist ein Zeichenfehler enthalten. Die Leitung von der Lötfahne 4 der Steckvorrichtung führt an den dritten und nicht an den vierten Anschluß des Abstimmschalters.)

## Grid-Dip-Meter mit Tunneldiode

Es ist zu erwarten, daß durch die Verwendung der Tunneldiode in der nächsten Zeit eine Reihe von Meß- und Prüfgeräten wesentlich vereinfacht werden kann. Eine im Bereich fallenden Widerstandes arbeitende Tunneldiode kann einen Röhren- oder Transistorgenerator ersetzen und das mit einer geringeren Zahl von Einzelteilen und bei einfacherem Aufbau.

Als erstes Gerät dieser Art wird nachstehend ein Grid-Dip-Meter beschrieben, das gemäß dem beigegebenen Schaltbild die Tunneldiode 1 N 2940 der General Electric Company verwendet. Die Diode bringt im Bereich fallenden Widerstandes den aus C und L gebildeten Parallelresonanzkreis zum Schwingen. Dazu ist es erforderlich, daß der aus den Widerständen R 1, R 2 und R 3 gebildete Spannungsteiler über der Stromquelle mit Hilfe von R 1 so eingestellt wird, daß die Diode negativen Widerstand aufweist. Das ist der Fall, wenn im Diodenkreis ein Strom von etwa 0.6 mA fließt.



Schaltung
des mit
einer
Tunneldiode
arbeitenden
Grid-DipMeters

Wird ein zweiter Resonanzkreis, der auf die gleiche Frequenz wie L/C abgestimmt ist, diesem genähert, so daß die Spulen miteinander koppeln, so geht der von dem Milliamperemeter angezeigte Strom maximal um  $50\,\mu\text{A}$  zurück; es handelt sich also wie bei allen Grid-Dip-Metern um einen Absorptionsvorgang.

Im vorliegenden Fall wird als Stromquelle eine Quecksilberzelle benutzt, die die Spannung von 1,34 V über einen längeren Zeitraum konstant hält. Es kann auch eine Monozelle benutzt werden, doch muß dann die am Diodenkreis liegende Spannung an R 1 öfters nachreguliert werden. —dy

Turner, R. P.: Build this Tunnel-Diode Dip Meter. Radio-Electronics, April 1961.

### Breitband-Zf-Verstärker für Multiplex-Hf-Stereofonie

Über die UKW-Transistor-Tuner der Firma Julius Karl Görler wurde bereits in der FUNKSCHAU 1961, Heft 9, berichtet. Zu diesen Tunern werden außerdem AM-Mischteile und passende Zf-Verstärker geliefert. Bei diesen sind die Stufen nicht neutralisiert; trotzdem wird eine ausreichende Sicherheit gegen Rückwirkungen und Schwingen erzielt. Die nicht neutralisierten Stufen haben den Vorteil, daß sich die Bandbreite beim Regeln erheblich weniger ändert. Die Kombination eines FM-Tuners mit einem Zf-Verstärker wurde für 240 kHz Bandbreite ausgelegt. Dies macht beide Bausteine für Hf-Stereo-Empfänger nach dem Multiplex-Verfahren geeignet, das kürzlich in den USA zur Norm erhoben

Bild 1 zeigt die Schaltung dieses FM-Zf-Verstärkers. Die Verstärkung des ersten Zf-Transistors T 1 wird bei stärkeren Sendern durch eine an der Diode D 1 gewonnene Spannung (AVR = Automatische Verstärleiter-Bauelementen. Der als Temperaturfühler dienende Halbleiter liefert eine der Temperaturabweichung proportionale Spannung. Sie wird verstärkt und durch einen Leistungstransistor so in einen stetig flie-Benden Heizstrom umgesetzt, daß Innentemperatur des Thermostaten nur noch in sehr engen Grenzen schwankt. Deshalb ist keine Glättung durch Wärmekapazitäten mehr notwendig, und man kann die Heizwicklung auf einen dünnen Blechmantel aufbringen, der guten Wärmekontakt zum Schwingquarzhalter hat. Auf diese Weise werden die Abmessungen des Thermostaten und die Wärmeverluste klein gehalten, so daß eine Heizleistung von maximal 2 W zur Temperaturstabilisierung ausreicht.

Der Thermostat besteht aus dem Unterteil mit der Quarzfassung und dem Oberteil mit dem Heizmantel (Bild 2). Beide Teile zusammen ergeben ein geschlossenes Kästen. Der Halter kann für Quarze von 100 kHz bis 150 MHz bemessen werden.

Die Betriebsspannung für den Thermostaten beträgt wahlweise  $24~V_{\pm}$  oder  $30~V_{\pm}$ . Die einstellbare Nenntemperatur kann je nach der Umgebungstemperatur zwischen 0 und  $_{+}$  65° C gewählt werden.

Die bereits in der FUNKSCHAU 1961, Heft 11, auf Seite 278 abgebildeten Quarz-Eichpunktgeber von Max Funke sind 100-kHz-Ouarze mit Schwingschaltung zum Überprüfen der Skaleneichung von Sendern und Empfängern. Sie liefern in 100-kHz-Abständen Eichfrequenzen bis über 30 MHz hinaus. Das Modell Universal 100 kHz (Bild 3 oben) ist ein transistorbestücktes Gerät mit Schalter und eingebauter 4,5-V-Normalbatterie, der nur 2 mA Betriebsstrom entnommen werden. Der Temperaturkoeffizient des Quarzes ist  $2 \cdot 10^{-6}$ , die Eichgenauigkeit beträgt 0,002 %. Diese genaue Frequenz läßt sich auch bei Alterung wieder einstellen, da sich die Quarzresonanz mit Hilfe der eingebauten Schaltelemente um einige Hertz ziehen läßt. Das Modell Einbau 100 kHz (Bild 3 unten) arbeitet mit der gleichen Schaltung, ist jedoch nicht nacheichbar. Die Frequenzgenauigkeit beträgt 0,05 %, die Stromversorgung erfolgt vom Hauptgerät aus.

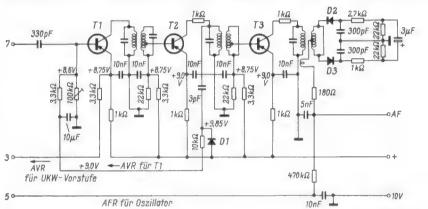



Bild 1. Schaltung des nicht neutralisierten Zf-Verstärkers Typ 322–0002 für 10,7 MHz von Görler

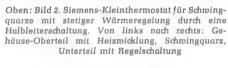
kungsregelung) heruntergeregelt. Gleichzeitig wirkt diese Stufe als Regelverstärker für die UKW-Vorstufe. Die Regeldiode D 1 wird bereits am Kollektor des zweiten Transistors angeschlossen, damit in jedem Fall der letzte Transistor schon begrenzt, bevor die Regelautomatik anspricht. Aus dem symmetrisch aufgebauten Ratiodetektor wird ferner eine Nachstimmspannung für den Oszillator (AFR = automatische Frequenzregelung) entnommen.

Ein Nf-Verstärkerbaustein Typ 324-0004 ergänzt die Kombination zu einem hochwertigen UKW-Empfänger.

## Thermostate v. Schwingquarze

Schwingquarze dienen als genaue Frequenznormalien, jedoch ändert sich auch bei ihnen die Frequenz geringfügig mit der Temperatur. Zur Abhilfe baut man den Quarz in einen Thermostaten ein. Solche Thermostaten waren bisher meist recht große Gebilde, die mit einem Zweipunktregler arbeiteten. Der Temperaturfühler schaltete die Heizung ein, wenn die Innentemperatur zu gering wurde, und schaltete sie wieder aus, wenn der Temperatursollwert überschritten war. Diese stoßweise Erwärmung erforderte dicke Wände für den Thermostaten, um die Wärmestöße auszugleichen; auch störten die Schaltimpulse bei empfindlichen Geräten.

Siemens entwickelte deshalb einen stetig regelbaren Kleinthermostaten mit Halb-


## Kleinstdrehkondensatoren

Mehrfach-Drehkondensatoren mit festem Dielektrikum für Taschengeräte und Reiseempfänger liefert die Hopt GmbH in drei verschiedenen Ausführungen. Die Grundfläche der Kondensatoren beträgt einheitlich nur 25 × 25 mm, die Bautiefe hängt nach Bild 4 von der Ausführungsform ab. Sie liegt bei etwa 20 mm für AM-Zweifach-Kondensatoren und bei rund 25 mm mit einem zusätzlichen UKW-Paket mit 2 × 12 pF. Bei den AM-Plattensätzen ist der Mittelpunkt versetzt, so daß sich ein Kurvenverlauf wie bei normalen Luftdrehkondensatoren ergibt. Die Aggregate werden wahlweise mit einer Zahntriebuntersetzung von rund 2:1 oder 4:1 geliefert.





Bild 3.100-kHz-Quarz-Eichpunktgeber von Funke. Oben: selbständiges Modell mit Batterie-Stromversorgung; unten: Einbau-Modell, Stromversorgung vom Hauptgerät



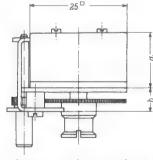



Bild 4. Abmessungen der Hopt-Kleindrehkondensatoren. Maβ b = 5 mm bei Untersetzung 2:1;
b = 6,5 mm bei Untersetzung 4:1

| ΔC          | Маß а      |  |  |  |  |
|-------------|------------|--|--|--|--|
| 2 × 280 pF  | 15,2 mm    |  |  |  |  |
| 280/180 pF  | 14,2 mm    |  |  |  |  |
| 280/97 pF   | 14,2 mm    |  |  |  |  |
| + 2 × 12 pF | a + 5,0 mm |  |  |  |  |

Neben zwei anderen deutschen Firmen macht auch Philips von der Möglichkeit des Einbaues einer relativ einfachen und daher preisgünstigen Nachhalleinrichtung Gebrauch. Die Stereo-Musiktruhe Stella (Bild 1) wird mit der aus den USA von Hammond bezogenen elektromechanischen Nachhalleinrichtung mit ungleichen Torsionsschwingern (Federn) versehen.

Die Gesamtschaltung des Gerätes (Bild 2) zeigt kaum Besonderheiten. Es handelt sich um einen AM/FM-Super mit UKW-Baustein mit der Doppeltriode ECC 85 und einer Empfindlichkeit von 0,8 µV, bezogen auf 26 dB Störabstand, normaler Zf-Verstärkung und üblichem AM-Eingang (ECH 81), AM-Demodulation durch Diodenstrecke in der Pentode EBF 89 und FM-Demodulation durch einen hf-symmetrischen, gleichspannungs-unsymmetrischen Ratio-Detektor für optimale AM-Unterdrückung. Im Nf-Teil sind zwei elektrisch gleiche Verstärker angeordnet; sie arbeiten bei Stereo-Wiedergabe zweikanalig und sind bei monophoner Wiedergabe parallel geschaltet. Die Lautstärkeeinstellung geschieht durch das Tandempotentiometer R 1/R 2. Das Potentiometer R 3 bildet die Stereo-Waage W; durch Ändern des Außenwiderstandes der beiden Vorverstärkertrioden läßt sich damit das stereofonische Gleichgewicht korrigieren. Die Tandempotentiometer T und H beeinflussen Bässe und Höhen.

Die Nachhalleinrichtung ist das übliche Modell der Hammond Co., Chicago mit zwei in der Mitte jeweils aufgetrennten Federn<sup>1</sup>). Die Laufzeit beträgt primär 30 Millisekunden, während der Nachhall sich auf maxi-

## Musiktruhe mit Nachhall-Einrichtung

## Philips-Stella 612 Reverbeo

mal 1.8 Sekunden einstellen läßt. Bild 3 zeigt die Schaltung des zusätzlichen Nachhallverstärkers mit dem Transistor OC 75 und der vorgeschalteten Nachhall-Einheit. In Schalterstellung Reverbeo2) werden die Nf-Eingänge Tonabnehmer und Tonbandgerät zur monophonen Wiedergabe über die Schalterkontakte r8-r9 parallel an den Eingang des linken Kanals (im Gesamtschaltbild der obere) gelegt. Die Nachhalleinheit liegt mit ihrem Eingang T an der Zusatzwicklung des Ausgangsübertragers dieses linken Kanals und mit ihrem Ausgang S am Nachhall-Potentiometer R (= Reverbeo, R 4). Der Schleifer dieses Potentiometers führt über die Kontakte r 21 - r 20 zur unteren Triode der Röhre Rö 5. Somit dient jetzt der linke Kanal als Nachhall-Verstärker für die monophone Wiedergabe, und zwar sowohl bei Schallplatten als auch bei Rundfunkempfang. Mit dem Potentiometer R (R 4) kann also das Verhältnis von Nachhall zum direkten Ton für den rechten Kanal kontinuierlich gewählt werden.



2) reverberate = widerhallen (englisch)



Bild 1. Philips-Musiktruhe Stella-Reverbeo (FD 6 D 12 A) mit Nachhalleinrichtung, vier Lautsprechern und Stereo-Plattenwechsler

Die Nachhalleinheit Bild 3 wird über den Widerstand R 101 durch Stromansteuerung mit einer Grenzfrequenz von ungefähr 150 Hz erregt. Ihr nachgeschaltet ist der Transistor OC 75; er wird vom Katodenstrom der Endröhren über den Punkt r gespeist. Die Eigenschaften der Feder-Nachhalleinheit begrenzen deren Wirkungsweise auf den Frequenzbereich zwischen ungefähr

#### FUNKSCHAU-Schaltungssammlung 1961/19

#### Philips-Stella 612 Reverbeo

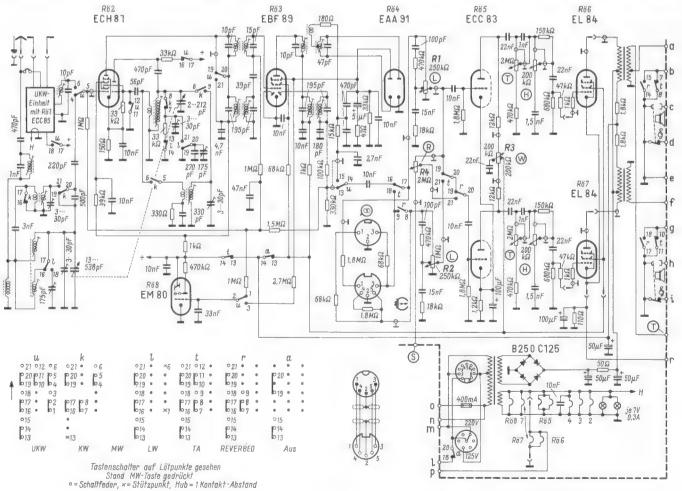



Bild 2. Schaltbild der Musiktruhe Stella-Reverbeo, Der Nachhall-Verstärker wird bei S und T angeschlossen

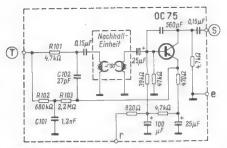
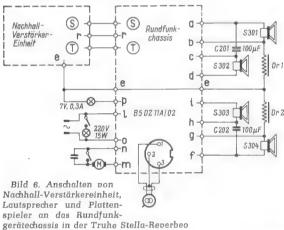




Bild 3. Nachhallverstärker mit Nachhalleinheit und Umwegfilter

150 Hz und annähernd 4000 Hz. Deshalb muß ein Umwegfilter parallel liegen, um die übrigen Frequenzen (also unterhalb von 150 Hz und oberhalb von 4000 Hz) auf das Gitter der Vorverstärkertriode im linken Kanal zu bringen. Infolgedessen wurde die Schaltung derart ausgelegt, daß der Transistor OC 75 von der Nachhalleinheit an der Basis und vom Umwegfilter R 102, R 103/C 101, C 102 am Emitter angesteuert wird. Bild 4 zeigt den sich gegenseitig ergänzenden Frequenzgang von Nachhall-Einheit und Umwegfilter und Bild 5 den Klirrfaktor des in Bild 3 gezeichneten Verstärkers.

Die Lautsprecherausstattung sieht je ein Duo-Tieftonsystem mit 21 cm  $\phi$  (11 000 Gauß) nach vorn strahlend und je ein Duo-Hochtonsystem mit 17 cm  $\phi$  (11 000 Gauß)



nach den Seiten vor. Sie sind gemäß Bild 6 durch die Frequenzweichen Dr 1/C 201 und Dr 2/C 202 getrennt; die Teilerfrequenz liegt bei 250 Hz. Diese Weichen sind nur bei Stereo-Wiedergabe wirksam, dagegen nicht

#### Technische Daten

Wellenbereiche: UKW, KW, MW, LW

Kreise: 6 AM, 10 FM

Röhren: EGC 85, ECH 81, EBF 89, EAA 91, ECC 83,  $2 \times$  EL 84, EM 80

Netzgleichrichter: B 250 C 125

Drucktasten: 7, und zwar für UKW, KW, MW, LW, TA, Reverbeo und AUS

Einsteller für: Lautstärke, Baß, Höhen, Stereo-Balance, Reverbeo

Nachhall-Einrichtung: ungleiche Torsionsschwinger (Hammond)

Nachhall-Verstärker: OC 75

Phonogerät: Stereo-Plattenwechsler AG 1016 (für LP als Einfach-Spieler, für 45er als Wechsler) mit Tonabnehmer AG 3305 mit Saphir für Normalrillen und Diamant für Mikrorillen

Lautsprecher: 2 Duo-Chassis, 21 cm  $\phi$ , für Tiefton, 2 Duo-Chassis, 17 cm  $\phi$ , für Mittel/Hochton

Möbel: Nußbaum mittel, mattiert Abmessungen:  $105.5 \times 72 \times 34.5$  cm

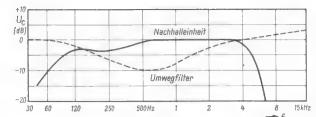



Bild 4. Frequenzgang von Nachhalleinheit und Umwegfilter

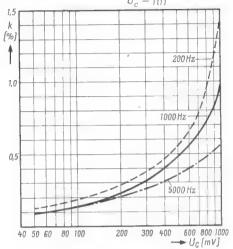



Bild 5. Klirrfaktor des Nachhallverstärkers  $k = f(U_a)$ 

bei Rundfunkempfang und in Stellung Reverbeo. In diesen Fällen wird das volle Frequenzband nach vorn abgestrahlt, nach den Seiten aber lediglich die Höhen nach Art des 3-D-Tones. Diese Umschaltung geschieht über die Kontakte t7 – t8, r15 – r14 und t10 – t11, r18 – r17.

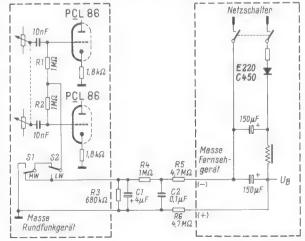
Ferner lassen sich zusätzliche Höhenstrahler für die Basisverbreiterung bei Stereo-Wiedergabe für jeden Kanal aufstellen, dann werden die eingebauten Höhenlautsprecher durch Schaltbuchsen abgetrennt. K. Tetzner

## Fernsehteil sperrt AM-Rundfunkempfang

Bei der Telefunken-Kombinationstruhe Terzola VI für Rundfunk und Fernsehen werden Störungen durch Oberwellen der Zeilenfrequenz beim AM-Rundfunkempfang automatisch verhindert, indem der Empfang im MW- und LW-Bereich gesperrt wird, solange das Fernsehgerät eingeschaltet ist.

Die Sperre arbeitet folgendermaßen: Das Fernsehgerät liefert eine negative Spannung von etwa 15 V zum Sperren der Nf-Stufen des Rundfunkempfängers. Die Kontakte S 1 und S 2 des Wellenschalters (siehe Bild) lassen diese Spannung nur im MW- und LW-Bereich wirksam werden. Die Fußpunkte der Gitterableitwiderstände R 1 und R 2 der Endröhren des Rundfunk-

Aus dem Netzteil des Fernsehgerätes wird am Kondensator C1 eine negativ gegen Masse gerichtete Spannung von 15 V erzeugt. Sie verriegelt bei LW und MW die Triodensysteme PCL 86 teiles führen über diese Kontakte. Bei KW, UKW, Phono und Tonband werden die Gitterwiderstände direkt an Masse gelegt. Bei MW und LW dagegen werden die Röhren mit der Sperrspannung von —15 V verriegelt. Die Sperrspannung wird am Widerstand R 3 des hochohmigen Spannungsteilers

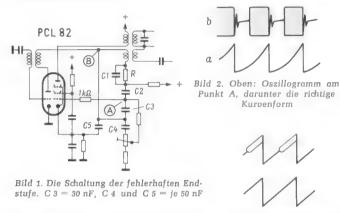

R 3, R 4, R 5, R 6 aus der Betriebsspannung des Fernsehteiles erzeugt. Die Chassis beider Geräte müssen also voneinander isoliert sein.

Nach dem Einschalten des Fernsehgerätes baut sich innerhalb weniger Sekunden am Elektrolytkondensator C1 eine — bezogen auf das Rundfunkchassis — negative Spannung von rund 15 V auf, die zum Sperren der Nf-Vorröhren dient. Nach dem Ausschalten des Fernsehgerätes muß zunächst die Ladung des Elektrolytkondensators über den Widerstand R 3 abfließen, so daß die Sperrung erst nach etwa 10 Sekunden aufgehoben wird. Zu diesem Zeitpunkt sind dann die Ablenkgeneratoren des Fernsehgerätes bereits außer Betrieb, und der Rundfunkempfang ist auch in den kritischen Bereichen wieder störungsfrei.

#### Schallplatten-Verkaufsiehre

Der volle Titel eines lesenswerten bei Bertelsmann erschienenen Buches - Schallplatten-Verkaufslehre für den Buchhandel - sagt alles über den Inhalt aus: Es sollen Anregungen und Hinweise für die Errichtung von Schallplatten-Abteilungen in Buchhandlungen gegeben werden. Neben Betrachtungen über die kaufmännische Seite, über die kulturelle Bedeutung und die Buchhandelsfähigkeit der Schallplatten werden praktische Vorschläge für Lagerhaltung, Repertoirebildung usw. gemacht. Die Herstellung der Schallplatte und ihre geschichtliche Entwicklung sowie ihre Technik werden knapp behandelt Ausführlich wird über die Schallplatten-Clubs berichtet, und man erfährt, daß der Durchschnitts-Umsatzanteil der im Sortimentsbuchhandel verkauften Schallplatten nach Umfrage des Börsenvereins etwa 5 % des jeweiligen Gesamtumsatzes beträgt, eine durchaus steigerungsfähige Größenordnung also. Im Anhang werden die Anschriften der Schallplattenverlage und -produzenten aufgeführt, ferner die Grossisten und Importeure seltener ausländischer Marken auch solcher aus dem Osten; es folgen Fach-literatur und eine Tabelle der wichtigsten Schlüsselnummern von Industrie und Verlagen, d. h. der Buchstabenkombinationen vor den Bestellnummern, die dem Kundigen die Herkunft der Schallplatte sofort nennen.

Schallplatten-Verkaufslehre für den Buchhandel. Von Bernhard Spatz und Fritz Wieninger. 88 Seiten mit Bildern, Preis kart. 6.90 DM. C. Bertelsmann Verlag, Gütersloh.




#### Fernseh-Service

## Zu geringe Bildhöhe durch Eigenschwingungen der Vertikal-Endstufe

Bei einem Fernsehgerät wurde beanstandet, daß die Bildhöhe bis auf etwa 5 cm zusammengefallen sei. Dies erwies sich als zutreffend und es sah aus, als ob das Bild oben und unten umgeklappt wäre.

Zuerst wurde versuchsweise eine andere Röhre PCL 82 in die Vertikal-Endstufe eingesetzt. Der Fehler blieb jedoch unverändert. Nun wurde die Stufe mit einem Oszillografen untersucht. Am Gitter g<sub>1</sub> (Punkt A) der Endstufe (Bild 1) war der Aussteuerimpuls bereits sehr stark verformt. Von dem parabelförmigen Sägezahn (Bild 2a) war kaum etwas zu erkennen. Nur das erste Stück des Bildhinlaufs war ein ansteigender Sägezahn; dann sprang die Amplitude nach Bild 2b auf ihren Maximalwert und das Bild ließ sich frequenzmäßig nicht mehr auflösen. Daher wurde die Kippfrequenz erhöht, bis auch dieser Teil des Oszillogramms aufgelöst wurde. Die Frequenz betrug nun etwa 30 kHz bei einer nur wenig verzerrten Sinusform.



Rechts: Bild 3. Oszillogramm am Punkt B, darunter die richtige Kurvenform

Um festzustellen, wo die Überlagerungsfrequenz entstand, wurde die Spannung am Kondensator C 5 (Punkt B) oszillografiert. Hier war nur eine kleine Überlagerung vorhanden (Bild 3 unten). Der Sägezahn hatte bis auf diesen Fehler die gewünschte Form und Amplitude. Damit war noch keine Klarheit geschaffen, und es wurde die Kapazität C 3 gitterseitig abgelötet. Am Gitter 1 der Endröhre stand nun nur noch die 30-kHz-Sinusschwingung. Am freien Ende von C 3 ergab sich der gleiche nur wenig fehlerhafte Impuls, der vorher an C 5 gemessen wurde.

Der Sperrschwinger wurde jetzt außer Betrieb gesetzt, aber am Gitter 1 der Endstufe standen nach wie vor die 30 kHz. Also schwang die Endstufe selbst. Die geringe Überlagerung des Sägenzahns an C 5 erfolgte demnach über die Gegenkopplungswicklung. Mit einem Röhrenvoltmeter wurde nun am Gitter 1 eine Vorspannung von – 25 V gemessen, wodurch sich auch die geringe Bildhöhe erklärte.

Da die Störschwingung sinusförmig verlief, mußte der Schwingkreis im Anodenkreis liegen, denn nur dort waren Induktivitäten und Kapazitäten vorhanden. Die Rückkopplung konnte dann nur durch die Gegenkopplungswicklung über die Glieder R/C 1 und C 2 erfolgen.

Nach dem Unterbrechen dieses Weges (Ablöten von C 2) setzte die Störschwingung aus. Eine weitere Voraussetzung für die Eigenerregung mußte aber ein für die höhere Überlagerungsfrequenz hochohmigeres Gitter 1 sein. Dafür kam nur der Kondensator C 3 in Frage. Er wurde ausgewechselt, und die Endstufe arbeitete wieder einwandfrei.

Der ursprüngliche Kondensator C 3 hatte seine Kapazität fast ganz verloren. Dieser Fehler wurde jedoch nicht festgestellt, als er gitterseitig abgelötet war und an seinem freien Ende das gleiche Oszillogramm aufgenommen wie an dem Verbindungspunkt C 4-C 5.

Abschließend sei festgestellt, daß man schneller auf die Eigenschwingung der Endstufe hätte schließen können, wenn man sofort mit dem Röhrenvoltmeter die negative Spannung am Gitter 1 der Endröhre festgestellt hätte; aber wer will das im voraus wissen.

E. Ebert, Bockum-Hövel

#### Vertikaler Balken im Bild

Der Kundendienst wurde zur Reparatur eines Fernsehgerätes gerufen, bei dem ein vertikaler Balken im Bild, leicht weiß, 100 mm breit und scharf begrenzt, als Störung angegeben wurde. Beim Be-

such war während der Testbildaussendung nichts Verdächtiges zu erkennen; später jedoch, als das Studiobild erschien, wurde der Fehler bestätigt gefunden. Der beschriebene Balken bewegte sich im Zeitlupentempo nach unten. Durch Verändern des Kontrastes und der Helligkeit sowie des Bildrasters wurde versucht, die Störung zum Verschwinden zu bringen — doch ohne Erfolg. Daraufhin wurde die Phase im Verstärkerzug um 180° gedreht, und der Balken erschien dunkel. Das war die Gewißheit, daß der Fehler vom Netz eingestreut wurde und seine Ursache wahrscheinlich im Heizstromkreis des Gerätes hatte. Nach Aufklappen des Chassis ließ sich jedoch nichts Außergewöhnliches feststellen.

In der Werkstatt war der Fehler bei Betrieb mit dem Bildmustergenerator deutlich zu sehen. Die Brummeinstreuung konnte mit dem Oszillografen im Video-Verstärker registriert werden und ließ sich bis zum Tuner-Ausgang verfolgen. Vom Ton-Zf-Teil rückwärtswirkend war nichts Verdächtiges zu bemerken.

Der Verdacht richtete sich auf den Tuner und die automatische Abstimmeinheit. Ein Heizfaden-Katodenschluß im Tuner hätte sich jedoch erfahrungsgemäß anders bemerkbar gemacht. So wurde zuerst die Röhre in der automatischen Abstimmung gewechselt: Die Automatik setzte völlig aus, und der Balken war verschwunden.

Nach Offnen der Einheit konnten zwei verschmorte Widerstände gefunden werden, und zwar an der Katode und am Gitter 2 der Röhre. Auch der Schluß des Pentodensystems mit der Heizung wurde einwandfrei nachgewiesen. Das Heizspannungspotential ersetzte dabei die fehlende Katodenspannung; so konnte die 50-Hz-Spannung an das Gitter des Oszillators im Tuner gelangen und das Videosignal mit 50 Hz modulieren.

#### Mangelnde Bildhelligkeit

In letzter Zeit erhielt ich mehrere Fernsehgeräte, bei denen eine ungenügende Helligkeit als Fehlerursache angegeben wurde. Alle Geräte waren etwa 2 bis 3 Jahre alt. Zunächst wurde der Fehler verständlicherweise in der Zeilenablenkstufe vermutet. Aber auch nach dem Auswechseln der Zeilen-Endröhre sowie der Boosterdiode zeigte sich keine befriedigende Bildhelligkeit. Auffallend war daneben eine ungleichmäßige Ausleuchtung des Bildschirmes.

Nach längerem Suchen stellte sich als Ursache eine falsche Einstellung des Ionenfallenmagneten heraus, jedoch sei darauf hingewiesen, daß die Einstellung seit dem Kauf des Gerätes nicht geändert worden und daß der Magnet noch fabrikmäßig verlackt war. Die Ursache ist daher wahrscheinlich in einem Nachlassen der Remanenz des Magneten zu suchen. Dadurch ist keine einwandfreie Ablenkung des Elektronenstrahls mehr gewährleistet, und es besteht die Gefahr einer Überbeanspruchung der Bildröhre, da infolge der mangelnden Helligkeit der Helligkeitseinsteller stärker aufgedreht wird, was einen erhöhten Elektronenstrom zur Folge hat. Man überprüfe also bei zu geringer Bildhelligkeit auch die Justierung des Ionenfallenmagneten.

Udo Schmidt

#### Schlechte Bild- und Zeilensynchronisation

Ein älteres Fernsehgerät zeigte zeitweise eine mangelhafte oder überhaupt keine Synchronisation der beiden Kippteile. Da von diesem Gerät, einem Fremdfabrikat, kein Schaltbild vorhanden und auch im Gerät selbst noch nicht einmal ein Hinweis auf die Röhrenbestückung angebracht war, mußte zunächst die Röhrenbestückung festgestellt werden. Im Vertikal-Oszillator und in der Endstufe arbeitete die Röhre ECL 80. Der Horizontal-Oszillator war mit dem Triodensystem der PCF 80 und das Amplitudensieb mit dem Pentodensystem dieser Röhre bestückt. Eine Röhrenerneuerung brachte keinen Erfolg.

Die Vermutung, daß der Koppelkondensator von der Video-Endstufe zum Amplitudensieb durchgeschlagen sein könnte, erwies sich als falsch. Vielmehr ergab eine Überprüfung der Betriebsspannungen, daß die Anodenspannung am Amplitudensieb fehlte. Der Siebwiderstand in der Anodenzuführung war schadhaft geworden. Aus erkennen Körper war ein feiner spiralförmiger, verbrannter Ring zu erkennen, der wahrscheinlich als Folge eines Haarrisses entstanden war.

#### Immer wieder: MangeInde Zeilensynchronisation

Wie so oft war auch der Anlaß zur folgenden Reparatur eine labile Zeilensynchronisation. — Die üblichen Routineuntersuchungen brachten keinen Erfolg.

Erst der Oszillograf am Ausgang des Amplitudensiebes (Schaltung Bild 1) führte auf die richtige Spur. An der Anode des Triodensystems der Röhre ECL 80 entsprach das aufgenommene Signal noch den Herstellerangaben; hinter dem (gekennzeichneten) 300-pF-Kondensator war das Signal jedoch nicht mehr ein-

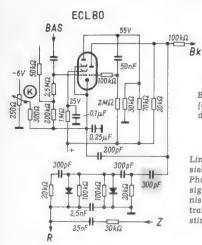


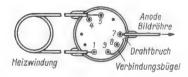

Bild 2. Das einwandfreie Signal (a) am Meßpunkt M gegenüber dem fehlerhaften Impulsbild (b)

Links: Bild 1. Das Amplitudensieb und der nachgeschaltete Phasenvergleich; BAS = Bildsignal mit Austast- und Synchronisierimpulsen, Z = vom Zeilentransformator, R = zur Nachstimmröhre, Bk = zum Bildkipp, M = Meßpunkt

wandfrei (Bild 2). Schuld hatte der gekennzeichnete Kondensator, seine Kapazität war auf rund 420 pF angewachsen. Dadurch hatten die Impulse am Eingang des Phasenvergleichs nicht mehr die richtige Form, und die Phasenvergleichsstufe mit der folgenden Nachstimmröhre konnte nicht ordnungsgemäß arbeiten.

Erwin Breuer

#### Helligkeit geht zurück, gleichzeitig Lupeneffekt


Ein Kunde meldete, daß sich die Bildhelligkeit an seinem Fernsehgerät nach halbstündiger Betriebszeit stark vermindert habe. Die Störung war verbunden mit einem "Luppeneffekt"; die Bildeinzelheiten erschienen ins Riesenhafte vergrößert auf dem Schirm.

Eine Untersuchung in der Wohnung des Kunden erbrachte eine zu geringe Hochspannung als Fehlerursache. Die Hochspannungsdiode DY 86 war schadhaft geworden. Sie wurde ausgewechselt, und die Helligkeit war wieder ordnungsgemäß vorhanden. Der Reparaturfall schien abgeschlossen zu sein.

Doch nach einer knappen halben Stunde meldete sich der Kunde wieder wegen desselben Fehlers. Das Gerät wurde nun mit in die Werkstatt genommen. Es zeigte aber auch nach mehrstündigem Betrieb keine Störung wie den beschriebenen Lupeneffekt. Ebensowenig ließ sich der Luppeneffekt durch Über- oder Unterspannung hervorrufen. Nach einigen Tagen wurde das Gerät zurückgegeben, mit dem Ergebnis, daß nach kurzer Zeit beim Kunden prompt die Helligkeit aussetzte.

Offensichtlich unterschieden sich die Betriebsbedingungen in der Wohnung des Kunden von denen in der Werkstatt, aber wo waren die Unterschiede zu suchen? Netz- und Antennenspannung schieden nachgewiesenermaßen aus; blieb nur noch ein etwaiger Unterschied in den Umgebungstemperaturen.

Der Empfänger war beim Kunden mit seiner Rückseite in unmittelbarer Nähe eines Heizkörpers der Zentralheizung aufgestellt. Nachdem das Gerät von der Heizung abgerückt und die Rückwand entfernt worden war, erschien nach kurzer Zeit die volle Bildhelligkeit. Auch in der Werkstatt ließ sich die Störung nun "rekonstruieren"; dadurch, daß die Rückwand mit einer Decke abgedichtet und das Gerät so auf hohe Temperaturen aufgeheizt wurde.



An der gekennzeich-neten Stelle in der Fassung der Hochspannungsdiode war eine Drahtverbindung gebrochen

Die Ursache war nun nur noch in der vergossenen Fassung der Hochspannungsdiode zu suchen. Ein Erneuern dieser Einheit beseitigte den Fehler. – Die schadhafte Fassung wurde vorsichtig zerlegt, und es ergab sich folgendes Bild: Das Hochspannungskabel war, um den auftretenden mechanischen Zug abzufangen, nicht direkt an den Heizungskontakt geführt, sondern an einen freien Kontakt angelötet und von dort über ein dünnes Drähtchen mit dem eigentlichen Anschluß verbunden. Diese Drahtverbindung war dicht an der Lötstelle gebrochen. An diesem Punkt ließen sich auch Spuren eines winzigen Lichtbogens erkennen. Die zusätzliche Erwärmung durch die Zentralheizung hatte also den Draht gedehnt und die Verbindung geöffnet. Durch den entstehenden Lichtbogen war der seltsame Lupeneffekt entstanden.

Gustav Hvarling, Radio- und Fernsehtechniker-Meister

#### Persönliches

#### Erich Graetz 70 Jahre alt

Am 13. Oktober wurde Erich Graetz siebzig Jahre alt, bemerkenswert spannkräftig und "jung" geblieben durch sein geliebtes Waidwerk, dem er sich jetzt, nach Übergabe der Mehrheitsanteile der Graetz KG an die Standard Elektrik

Lorenz AG, voll und ganz widmen kann.



Der Enkel des Firmengründers Albert Graetz und Sohn des Kommerzienrates Max Graetz baute schon frühzeitig, zuerst im Berliner Stammhaus, die Fertigung von Elektro-Haushaltgeräten auf, woraus bald eine Produktion von Lautsprechern und Radio-Zubehörteilen entstand, schließlich ausgeweitet zur Fabrikation von Rund-funkempfängern. 1930 übernahm Erich Graetz zusammen mit seinem 1954 verstorbenen Bruder Fritz die Gesamtleitung des Unternehmens mit damals 5000 Be-schäftigten. Das Kriegsende brachte den

scheinbar endgültigen Zusammenbruch: das im Ostsektor liegende Berliner Werk wurde ebenso wie die Zweigfabrik in Rochlitz/Sachsen enteignet, während das Werk Bregenz von der österreichischen Regierung unter Treuhandverwaltung gestellt wurde. Erich Graetz selbst wurde interniert.

Nach seiner Entlassung gründete er zusammen mit seinem Bruder Fritz und einigen Kommanditisten unter großen Schwierig-keiten in Altena i. W. die Graetz KG. Auf die Fertigung von Elektro-Haushaltgeräten wurde von vornherein verzichtet; man übernahm lediglich die Herstellung von Petromax-Erzeugnissen und Rundfunkgeräten, später selbstverständlich auch von Fernseh-empfängern. Dem neuen Werk war ein rascher Aufstieg beschie-den, insbesondere nach der Einführung des Fernsehens. Heute werden in acht Betrieben etwa 6000 Mitarbeiter beschäftigt; Graetz gehört marktanteilsmäßig zu den vier größten Fernsehgeräteproduzenten im Bundesgebiet.

Erich Graetz hielt zeit seines Lebens auf Distanz; er ließ die Dinge niemals so ganz dicht an sich herankommen – er betrachtete vielmehr Menschen und Ereignisse mit Kühle und Sachlichkeit. Aber er wußte genau die richtigen Mitarbeiter um sich zu versammeln, denen er beträchtliche Freiheit des Handelns und der Entscheidung einräumte. Die Unrast des modernen Lebens hat Erich Graetz wenig anhaben können. K. T.

Jörn Thiel, der bisher vorwiegend an der musischen Bildungsstätte in Remscheid tätig war und dort als Begründer des Lehrfaches "Technische Mittler" bekannt wurde, ist zur Folkwangschule für Musik, Schauspiel, Tanz und Sprechen in Essen übergewechselt. Hier baut er eine Ton- und Bildabteilung auf und wird in den Fächern Musikaufnahme, Hörspiel und Schallplattenkunde, später auch Film-, Funk- und Fernsehkunde unterrichten. Auf diese Weise sollen dem angehenden darstellenden Künstler die technischen Geräte nahegebracht werden, mit denen er später häufigen und engen Kontakt haben wird.

Direktor Werner Meyer (Blaupunkt-Werke) und Prokurist und Werbeleiter Horst Ludwig Stein (Graetz KG) wurden von der Union Internationale de la Presse Radiotechnique et Electronique (U.I.P.R.E.) zu Ehrenmitgliedern ernannt. Beide Herren hatten im Juni 1959 die Gründung dieser Vereinigung europäischer Fach-redakteure und Fachschriftsteller maßgeblich gefördert.

Dr. Hans Rindfleisch, Technischer Direktor des Norddeutschen Rundfunks und Vizepräsident der Technischen Kommission der VER (Vereinigung der europäischen Rundfunkgesellschaften), wurde vom Verwaltungsrat des Norddeutschen Rundfunks, Hamburg, für weitere sechs Jahre in seinem Amt bestätigt.

Neuer Geschäftsführer der Elektro Spezial GmbH, Hamburg, wurde **Peter Erich Gremer** – sozusagen ein Außenseiter in der Elektronik, denn er war zuletzt viele Jahre in der Mineralölwirtschaft tätig.

Dipl.-Ing. Karl-Heinz Gleitsmann, Chef der Technischen Pressestelle der Hannover-Messe und uns allen als guter und hilfreicher Freund der Fachpresse bekannt, wurde zum Abteilungsleiter mit Handlungsvollmacht ernannt.

Hans Werner Fastert und Karl Heinz Kaltbeizer, Spezialisten für Frequenzplanung im Institut für Rundfunktechnik, Hamburg, sind auf Einladung der South African Broadcasting Corporation nach Südafrika geflogen, um die Voraussetzungen für den Aufbau eines UKW-Rundfunknetzes in der Südafrikanischen Union zu prüfen.

### Dringende Bitte an unsere Leser!

Bei allen Zuschriften, die sich auf Aufsätze in der FUNKSCHAU beziehen, bitten wir, stets anzugeben:



Vollständige Überschrift Erscheinungsjahr, Heftnummer, Seitennummer

Dies erleichtert die Arbeit der Redaktion und trägt zu einer schnelleren Erledigung der Zuschrift bei.



US-Sende-Empfänger, für mobil-und stationären Betrieb das ideale Amateurgerät, Type BC-1306; Be-reich 3800 bis 6500 kHz, für das 40und 80-m-Band leicht hinzutrimmen. Sender (VFO/CO-PA): Der Sender kann variabel oder mit Quarz be-

kann variabel oder mit Quarz betrieben werden. Output bei A 1
25 W, bei A 2 und A 3 8,5 W.
Röhrenbestüdung: Sender: 2 ×
3 A 4, 1 × 2 E-22, 1 × VR-105.
Empfänger: 2×1 L 4, 1×1 R 5, 1×1 S 5, 1×3 Q 4.
Empfänger, 6-Röhrensuperhet, 8 Kreise. Eingebauter Modulatorteil, Tast- und Antennenrelais, Röhren, Eichquarz, Gehäuse, Deckel. Das Gerät ist neuwertig. neuwertig, einmaliger Sonderpreis DM 295.— Stromversorgung aus Batterien, Umformer oder Netzteil. Gewicht ca. 10 kg, Größe 370 × 250 ×

Universal-Empfänger, Fabrikat RCA, Bereich: 195 kHz bis 9,5 MHz, mit Röhren und Umformer. Preis per Stück DM 183.-



Morseübungsgeräte Type TG-5 in Metallgehäuse, Größe: ca. 170 × 110 × 100 mm mit eingebauter Morsetaste, rungssummer, Überlage-Tastrelais einstellbar, Alarmklingel, Kopfhöreranschluß, An-

Kopinoreranschluß. Änschlußmöglichkeit zum Zusammenschalten v. 2 Geräten üb. Fernleitung. Einmaliger Sonderpreis nur **DM 19.59** o. Batterien. Betriebsspannungen: 1×3 Volt (2 Monozellen), 1×9 bis 22,5 Volt

Passende Hörmuschel mit Klinkenstecker DM 3.80

US-Zerhackersätze für Eingang 6 Volt = Leistung 100 Watt, Frequenz 100 Hz.

Sonderpreis nur DM 13.50 Größe: ca. 127 mm lang, 70 mm breit, 80 mm hoch. Zustand neu!



Sonderposten fabrikneues Material US-Kunststoff Folyathylen Folien-Planen. Abschnitte 10 × 3,6 m = 36 qm, transparent, vielseitig verwendbar zum Abdecken von Geräten, Maschinen, Autos, Bauten, Gartenanlagen usw. Preis per Stück DM 16.85



US-Vorschalttransformator, 220 V/110 V, 75 W, fabrikneu DM 13.60

Weitere interessante Angebote auch in früheren Funkschauheften, Fordern Sie Speziallisten an!

FEMEG, Fernmeldetechnik, München 2, Augustenstr. 16

Postscheckkonto München 595 00 · Tel. 59 35 35

#### TRANSFORMATOREN



Serien- und Einzelherstellung von 2 VA bis 7000 VA Vacuumtränkanlage vorhanden Neuwicklung in ca. 10 A-Tagen

#### Herbert v. Kaufmann

Hamburg - Wandsbek 1 Rüterstraße 83



| D:                                                                                               | M             |
|--------------------------------------------------------------------------------------------------|---------------|
| Bandfilter 460 kHz (70 $	imes$ 35 mm $\phi$ )                                                    |               |
| $(70 \times 35 \text{ mm } \phi)$                                                                |               |
| Ferritstab, 140 $\times$ 8 mm $\phi$                                                             | 95            |
| Sortiment Spulenkörper                                                                           |               |
| (sämtlich mit Ferritkernen) 100 Stück 10.                                                        | -             |
| Für gedruckte Schaltungen:                                                                       |               |
| Pertinax-Tafel 1,5 mm mit Kupferfolie 240 × 110 mm                                               | 50            |
| Besonders preiswerte Transistoren:                                                               |               |
|                                                                                                  | 40            |
|                                                                                                  | 70            |
| HF-Transistor (TKD) ähnlich OC 44 2.                                                             | 60<br>60      |
| Kleinleistungstransistor (TKD) ähnlich OC 72 2.                                                  | 60            |
| TKD-Leistungstransistoren:                                                                       |               |
| (max. 10 V Betriebsspannung)                                                                     |               |
| 6 W 3.20 8 W 3.90 12 W 4.                                                                        | 20            |
| Drift-Transistor f. KW u. 10,7 MHz ZF (INTERMETALL)                                              |               |
| AF 111 ähnlich OC 614/OC 170 4.                                                                  | 80            |
|                                                                                                  | 60<br>50<br>— |
| Silizium-Leistungsgleichrichter OY 5060                                                          |               |
| 70 V/60 mA (f Klainladagaräta new ) 3                                                            | 50            |
| Tastensatz 6 X IIM Finzelausläsung 2                                                             | 90            |
| Miniaturfassungen [7pol.]                                                                        |               |
| Novalfassungen (9pol.)                                                                           |               |
| Lötleiste. 15pol                                                                                 |               |
| Gewebe-Rüschschlauch (1,2 mm Innen- $\phi$ ) pro Meter                                           | 10            |
| Netztrafo prim.: 110/220 V, sek.: 1×240 V/80 m                                                   |               |
| 6,3 V/3,5 Amp 6.                                                                                 |               |
| Netztrafo prim.: 220 V, sek.: 1×250 V/60 mA;                                                     |               |
|                                                                                                  | 50            |
| Netztrafo (Doppelweg) prim.: 110/220 V, sek.: 2                                                  | ×             |
| 240 V. 60 mA 7.                                                                                  |               |
| 6,3 V/2,6 Amp.: 4 V/1,1 Amp                                                                      |               |
| Tisch-Mikrophon (Tauchspul), Fabr.: SENNHEISF MD 5, niederohm. 200 $\Omega$ , statt 51.— 28.     |               |
| Lautsprecher, besonders preiswert!                                                               |               |
| (Industrienosten)                                                                                |               |
|                                                                                                  | 90            |
| 180 × 130 mm Ø. (besonders flache Ausführung:                                                    | 90            |
| 40 mm tief), 4 W 8.                                                                              | 90            |
| 180 $\times$ 130 mm $\phi$ , (mit Hochtonkegel), 4 W 9. 260 $\times$ 150 mm $\phi$ , 6 W         | 50            |
|                                                                                                  |               |
|                                                                                                  | 90            |
| StatHochton-Lautsprecher: LORENZ LSH 75                                                          |               |
| STH 7 (74 mm) 2.                                                                                 | 50            |
| Drehko, 2 × 500 pF (kugelgelagert, calitisol.),                                                  |               |
| 60 × 45 × 35 mm                                                                                  | 40<br>70      |
| dto., 2 × 500/2 × 17 pF m. Feintrieb 3 : 1                                                       |               |
| $(80 \times 50 \times 35 \text{ mm})$                                                            | .90           |
| (80 × 50 × 35 mm)                                                                                | 90            |
| Potentiometer o. Sch. (normale Achslänge) je                                                     | 60            |
|                                                                                                  |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                             | g.            |
| Potentiometer m. Sch. (normale Achslänge) je 1.                                                  |               |
|                                                                                                  |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                             | ŏʻ            |
| 10 k $\Omega$ log. 50 k $\Omega$ log. 1 M $\Omega$ lin. 3 M $\Omega$ lin.                        | 1.            |
| Stereo-Potentiometer (Tandem)                                                                    |               |
| $2\times250~\text{k}\Omega$ 2.50, $2\times1~\text{M}\Omega$ 2.50, $2\times1,3~\text{M}\Omega$ 3. | 50            |
| Elkos                                                                                            |               |



280 MF 500/550 V (120 × 40 mm Φ) ........ 3.90

¼-3 W, 100 Stück, sortiert ............ 6.-Drahtwiderstands-Sortiment: 1-15 W, 100 St. 10.-

WIDERSTANDS-SORTIMENT:

Radio- und Elektro-Handlung (20 b) BRAUNSCHWEIG

Ernst-Amme-Straße 11 Fernruf 2 13 32, 2 95 01



DM

bietet an:

mit HVP 2). Genauigkeit:

#### **EICO Röhrenvoltmeter Modell 221**

Ein preisgünstiges Universal-Röhrenvoltmeter mit 11,5 cm Anzeigeinstrument. Polumschaltung bei Gleichspannung und O-Marke in Techn. Daten: Gleichspannung: 0/5/10/ 100/500/1000 V (bis 30 KV Skolenmitte



± 3 %. Eingangswiderstand : 25 M $\Omega$ . Wechselspannung : 0/5/10/100/ 500/1000 V (eigene Skala 0-5 V). Genavigkelt:  $\pm$  5 %/e. Eingangswiderstand: 3 M $\Omega$ . Frequenzbereich: 20 Hz bis 200 kHz (bis 200 MHz mit PRF 25). Ohmmeter: 0-1 k $\Omega$ /10 k $\Omega$ /1 M $\Omega$ /10 M $\Omega$ / 1000 MΩ, Genavigkeit: ± 3 º/e. Dezibelbereich : - 20 bis + 55 dB. Ausmaße: 240x150x130 mm. Gewicht: 4,5 kg. Gehäuse Stahlblech grav gespritzt mit geätzter Frontplatte und

betriebsfertig: DM 199. -

BAU SATZ: DM 169. -

#### EICO Röhrenvoltmeter Modell 214 de Luxe

1st eine Luxusausführung mit 19cm großem Anzeiceinstrument. Technische Daten wie Modell 221.



Tranariff

betriebsfertig DM 299. -

BAUSATZ: DM 249. -

#### **EICO Röhrenvoltmeter Modell 232**

Für den Fernseh-Service speziell entwickeltes Röhrenvoltmeter mit 11,5 cm großem Anzeigeinstrument und umschaltbarer Meßspitze, Polumschaltung bei Gleichspannung und O-Marke in Skalenmitte. Techn. Daten:



Gleichsnannung: 0/1.5/5/ 15/50/150/500/1500 V (bis 15/50 kV mit HVP 2). Eingangswiderstand: 11 M $\Omega$ . Meßgenauigkeit: + 3 %. Wechselspannung: 0/1,5/5/15/50/ 150/500/1500 V (eigene Skala für 0-1,5 V). Eingangswiderstand: 11 M $\Omega$ . Meßgenavigkeit: + 5 %. Frequenzbereich: 30 Hz bis 3 MHz (bis 250 MHz  $\pm$  10 °/ $_{0}$  mit PRF 11). Ohmmeter 0-1000 M $\Omega$ RX 1/10/100/1000 Ω, 10/100 kΩ, 1 MΩ (Skalenmitte 10  $\Omega$  im RX 1 Bereich). Ausmaße: 215 x 127 x 127 mm. Gewicht: 3 kg.

Gehäuse Stahlblech grau gespritzt mit geätzter Frontplatte, Traggriff. betriebsfertig: DM 249. -BAUSATZ: DM 189. -

#### EICO Röhrenvoltmeter Modell 249 de Luxe

Luxusausführung und mit 19 cm großem Anzeigeinstrument. Techn. Daten wie Modell 232.



betriebsfertig: DM 359.-

BAUSATZ: DM 299. -

#### TEHAKA

Technische Handels KG, ALFRED DOLPP

Augsburg - Zeugplatz 9 - Telefon 1744 Alleinvertrieb für die Bundesrepublik

JAPAN



LEADER LAG-65 NF-Meßgenerator mit eingebautem Frequenzmesser 10 Hz bis 100 kHz, Klirrfaktor 0.5 %. Frequenz- und Ausgangsspannung werden an zwei Instrumenten abgelesen. DM 429.-



LEADER LAG-55 Sinus-Rechteckgenerator, 20 Hz bis 200 kHz, Ausgangsspannung 10  $V_{
m eff}$  bzw.  $10 V_{
m SS}$ mit zusätzlich eingebautem Hochpaßfilter für I. M.-Messungen. DM 219.-



LEADER LSG-11 Prüfsender 120 kHz bis 130 MHz. Mod. AM-400 bzw. 1000 Hz, mit eingebauter Quarzkontrollstufe 1-15 MHZ. DM 129.-

Die aufgeführten LEADER-Geräte zeichnen sich durch große Preiswürdigkeit und qualitativ beste Ausführung aus. Garantie: 12 Monate. Netzanschluß: 220 Volt.

Das aufgeführte Programm ist sofort lieferbar.

LEADER-Geräte sind keine Kit- bzw. Bausatzausführungen.

Bitte, fordern Sie technische Unterlagen an. Vertrieb für Westdeutschland und Europa:

Elektronische Test-Geräte



#### Heinz Iwanski

Vienenburg/Harz, Postfach 93 Tel. 872, Draht: Electronic Vienenburg Ihr preisgünstiger Lieferant für:

Röhren Meßinstrumente **UHF-Teile** Antennen Rundfunk-, Fernseh- und Elektrogeräte



#### J. W. ZANDER & Co.

Rundfunk-, Fernseh- und Elektrogroßhandel

Dortmund

Feson

Freibura

Balkenstraße 15

Teichstraße 4

Im Grün 3

Stuttaart

Heilbronn

Stöckachstraße 8

Gartenstraße 115

Verkauf nur an den Fachhandel

119.50 UHF-Konverter UHF-Tuner mit Zubehör 69.50 1.90 Taste 4 x Um Taste 4 x Um, 1 x Um, 1 x leer 1.65 Mu-geschirmter Eingangs-3.50 trafo, klein 1:15 Netztrafo 220 V

6,3 V, 3 A, 250 V, 50 mA 7.50

Lautsprecher 3 W, Hochtonkegel 9.60 Lautsprecher 1 W

flach, geeignet für Transistorgerät 6.-

KLANG-TECHNIK BERLIN SO 36 · Orgnienstr. 188



#### HELATON - LAUTSPRECHER

Johannes Michalski

Lautsprecher, rund und oval, 1-20 Watt Leistung

Reparaturen aller Systeme bis 1000  $\Omega$  Imped.

Hamburg 6 Augustenpassage 17

#### 1 Stereo-Mischpultverstärker

2 mal 7,5W, 3 Eingänge Bestückung: 2 ELL 80, 2 ECC 83, 2 Er 60, 1 EMM 801 durch Auflösung zu verkaufen. DM 300.- (Preis) Zuschr, unter Nr. 8667 E Gleichrichtersäulen und Transformatoren in jeder Größe, für jeden Verwen-dungszweck: Netzgeräte, Ratterieladuna, Steueruna



#### Musikschränke (leer)

zum Einbau Ihrer Rundfunk-, Fernseh-, Phono-, Tonbandchassis. Verlangen Sie bebildertes Angebot von

Tonmöbelbau KURT RIPPIN Miltenberg/Main

v. Steinstraße 15



# 1EIRIX

Universal-Meßinstrument **INTERNATIONAL Type 430** 



7 Gleich- und Wechselspannungsbereiche 6 Gleichstrombereiche 3 Widerstandsbereiche 0 bis  $20 \, M\Omega$ Innenwiderstand:

 $20000 \,\Omega/V$ , m. Überlastungsschutz.

Betriebs- und Universal-Prüfgeräte, Meßsender, Meßbrücken, Scheinwiderstandsbrücken, Röhrenprüfgeräte, Wobbelgeräte, HF-Oszillografen.

Fordern Sie bitte ausführliche Unterlagen an: JOACHIM F. FERRARI BERLIN-CHARLOTTENBURG, Eosanderstr. 25

#### FUNKE-Röhrenmeßgeräte

ren Bedienung auch durch Lajenhände u. den millionenfach bewährten Prüfkarten (Lochkarten). Modell W 20 auch zur Messung von Germa-niumdioden, Stabilisatoren, Relaisröhren, (Kaltkatodenröhren) usw. Bitte Prospekte anfordern.

mit der narrensiche



MAX FUNKE K.G. Adenay/Eifel Spezialfabrik für Röhrenmeßgeräte



#### das kleine magazin

bekannt durch die idealen Aufbewahrungsmöglichkeiten von Klein- und Kleinstteilen aller Art bietet Ihnen



jetet:

eine 4. Schublade für größere Teile

herabgesetzte Preise

neue Modelle

Bitte, verlangen Sie unverbindlich ausführlichen Prospekt

J.K.Brauer & Co., Hamburg 1, Burchardstr. 8, Tel. 33 5465



TESLA

#### - BESTANDTEILE:

- Elektrolytische und Wickelkondensatoren
- Widerstände
- Potentiometer
- Störschutz-Kondensatoren
- Bestandteile für die Fernseh- und Transistortechnik
- Röhren



PRAHA/TSCHECHOSLOWAKEI, Třída Dukelských hrdinů 47

#### **SONDERANGEBOT**

| A 40 N<br>A 409<br>A 410<br>A 915<br>Aa<br>AF 100<br>ARP 3<br>ARP 4<br>ATP 7<br>Ba<br>Bas<br>Bi<br>Bo<br>Ca<br>CC 2<br>CK 5687<br>CK 5703<br>CK 5854<br>CV 54<br>CV 415<br>DC 25<br>DCG 1/150<br>DET 9<br>DF 25<br>DLL 21<br>DES 3110<br>DS 3111<br>E 50/600<br>E 1406<br>N E 1406<br>E 406 N<br>E 1408<br>E A 50 | 0.40 0.35 0.30 0.25 0.30 0.75 0.30 0.50 1.75 0.80 3.20 1 2 0.40 7 15 15 15 0.90 2 0.50 0.50 0.75 0.50 0.50 0.75 0.60 0.75 | 0.35         EBC 33         2.50           0.30         EC 50         15.—           0.25         EF 13         1.90           0.30         EF 54         2.25           0.75         EFF 50         8.—           0.50         KB 2         1.—           0.50         KB 2         0.50           0.75         KBC 1         0.50           1.75         KC 1         0.30           0.80         KC 3         3.09           3.20         KDD 1         0.50           1.—         KF 3         0.60           2.—         KK 2         2.50           0.50         KL 1         0.35           0.40         KL 4         1.—           7.—         L 497 D         3.50           1.—         L G 2         0.40           1.20         LG 3         2.—           1.5—         L G 4         0.45           0.90         LG 6         0.51           2.—         LG 7         0.75           3.50         LG 77         0.75           1.70         LK 4250         5.—           1.70         LK 4250         5.— | 2.50<br>15.—<br>1.90<br>2.25<br>8.—<br>1.—<br>0.50<br>0.50<br>0.30<br>0.90<br>0.50<br>0.60<br>2.50<br>0.35<br>1.—<br>3.50 | OS 18/600 PC 1,5/100 PE 04/10 PE 1/75 PTT 1 PTT 2 PTT 3 PTT 100 PTT 202 R 100/6 R 122 R 209 R 7200 RD 2, 4 Td RD 2, 4 Td RE 074 RE 084 RENS 1664 d RES 1664 d RES 1664 d RKR 72 RKR 73 RL 1 P 2 RL 2 P 3 RL 2, 4 P 2 RL 2, 4 T 1 RL 2, 4 T 4 RL 12 T 15 RL 12 T 15 RL 12 T 35 RRBF RRRC | 3.50<br>9.—<br>2.—<br>1.75<br>1.75<br>1.75<br>1.75<br>1.50<br>0.15<br>0.80<br>0.75<br>0.80<br>1.35<br>0.25 | .— RS 235<br>.— RS 237<br>.— RS 289<br>.75 RS 289<br>.75 RS 282<br>.75 RV 2 P 800<br>.50 RV 2, 4 P 45<br>.50 RV 12 P 4000<br>.115 RV 275<br>.80 STV 150/250<br>.75 MSTV 140/60 Z<br>.75 MSTV 140/60 Z<br>.77 T 2742 e<br>.78 T 274<br>.80 T 2742 e<br>.78 T 2742 e<br>.79 T 2742 e<br>.79 T 2742 e<br>.70 T 2742 e | 30.—  8.— 3.50 1.10 1.— 2.20 0.25 2.— 0.80 2.90 3.— 2.50 1.— 1.— 1.50 4.50 5.80 2.10                                      | 12 SC 7 24·76 24/78 36 37 76 801 A 843 845 860 954 956 958 A 1616 1624 1626 1629 1632                  | 1.— 0.50 0.50 0.50 0.50 0.75 0.80 1.— 10.— 3.— 0.80 0.75 1.50 0.50 2.— 0.75         | 2051<br>4019 A<br>4641<br>4646<br>4647<br>5840<br>7475<br>8012 A<br>8020<br>9001<br>9004<br>13202 X<br>Kathodenstral<br>röhren:<br>HR 2/100/1,5<br>HRP 2/100/1,5<br>3 DP 1<br>5 AP 1 | 1.—<br>3.—<br>8.—<br>5.—<br>0.50<br>2.—<br>5.—<br>0.75<br>0.40<br>11-<br>20.—<br>20.—<br>8.—<br>15.— |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.40<br>2.—<br>0.45<br>0.5m<br>0.75<br>1.—<br>4.50<br>5.—<br>0.75<br>0.45<br>4.50<br>1.25<br>0.75                         |                                                                                                                                                                                                                                                                                         | 3.50<br>0.50<br>0.50<br>0.50<br>3.—<br>2.80<br>1.—<br>0.25<br>0.30<br>0.25<br>0.60<br>0.75<br>2.—<br>0.30  | 1 LD 5<br>2 E 22<br>2 X 2<br>3 D 6<br>4 CC 1<br>6 AB 7 M<br>6 B 8 G<br>6 C 5 G<br>6 D 6<br>6 G 6<br>6 G 6<br>6 G 5<br>7 6 T<br>6 T<br>6 Q 7 G<br>19 AQ 5                                                                                                                                                                                                                                                                           | 2.10<br>1.—<br>12.50<br>1.50<br>0.40<br>1.—<br>1.50<br>0.75<br>0.75<br>0.75<br>0.75<br>1.—<br>0.75<br>1.—<br>0.75<br>1.50 | Elektrolyt-K<br>3000 mF 25—<br>2000 mF 25—<br>Blockkonder<br>2 mF 160 V<br>0,5 mF 160 V<br>Fassungen f | ondensatoren<br>-30 V<br>-30 V<br>ssatoren:<br>""  ""  "  "  "  "  "  "  "  "  "  " | 5 CP 1                                                                                                                                                                               | 15.—<br>1.—<br>0.80<br>0.20<br>0.15<br>0.40<br>0.30<br>0.30<br>0.30<br>0.10<br>1.25<br>2.50<br>0.10  |

Glimmlampen, EW-Widerstände, Urdoxe, Spezialglühlampen usw. auf Anfrage. Technische Daten über Röhren können auf Wunsch zugesandt werden.

Verlangen Sie bitte meine Sonderangebotsliste.

EUGEN QUECK · Ingenieur-Büro NÜRNBERG · Augustenstraße 6 Röhrenvoltmeter VT-19

ter VT-19
Eingangswiderstand: 11 MΩ. ~
und = Volt: 1,5,5,
15, 50, 500, 1500 V
RMS. 4,2, 14, 42,
140, 420, 1400, 4200
V P/P. Ohm: 0,1 Ω
bis 1000MΩ, R×10,
× 100,
× 1000, × 1000,
× 10 000, × 0,1 M,
× 1 M × 30 M dB. × 100, × 1000, ×10 000, ×0,1 M, ×1 M, ×10 M. dB: —20...+66.

200×130×110 mm DM 185. — Hf-Meßkopf 300 MHz **DM 18.**—



180×110×105 mm Hf-Meßkopf 300 MHz **DM 18.**— DM 145.-

F PV-58 Eingangswider-stand 11 MΩ. ~ und = Volt: 1,5,5, 50, 150, 500, 1500 V RMS. 4,2, 14, 42, 140, 420, 1400, 4000  $VP/P.Ohm: R \times 100,$  $\times 1000,$   $\times 1000,$  $\times 1000,$   $\times 1000,$ 

**DM 17** 

iede

Unentbehrlich

Reparaturta-

sche. Kombinierter Hf- und Nf-Gene-

rator mit Transistoren. 1 kHz bis 30 MHz.





300×215×165 mm DM 190.—

Prüfgenerator SWO-150 Meßsender SWO-150. Frequenzge-nauigkeit: ± 1%. Frequenzbereich: A 150 bis 350 kHz, B 350 bis 500 kHz, C 400 bis 1100 kHz, D 1,1 bis 4 MHz, E 3,5 bis 12 MHz, F 11 bis 40 MHz, G 40 bis 150 MHz, H 80 bis 300 MHz. Modulat: 800 Hz Meßsender SWO-

300×200×130 mm

Fraguenzbereich: A 3,5—7,5 MHz, B 7—15 MHz C 14—30 MHz Verstärkung über

MHz DM 18.— ±40%. Kann auch unmoduliert betrieben werden. Dämpfung: 20, 40, 60 dB. Kontinuierlich 40 dB.



242×166×132 mm DM 110.— Ausgang 10 µV bis 1 V.

**Tonfrequenzgenerator AG-8** Sinus, Rechteck u. gemischte Wellen. 20—200 Hz, 200—2000 Hz, 200—2000 Hz, 2000—200 Hz. 2000—20 000 Hz. 20 000-200 000 Hz. Direkt ablesb. Ausgangsspan-nung 10 µV bis RMS oder P/P.



bereich: A 150-400 kHz, bereich: A 150—400 kHz, B 0,4—1,1 MHz, C 1,1—3,5 MHz, D 3,5—12 MHz, I 11—40 MHz, F 40—150 MHz, G 80—300 MHz. Modulation AM 800 Hz (abschalt-

Handwerkzeugsatz 119-A Hochw. Stahlwerkzeuge. Per Satz DM 14.50

Transistorprüfer SC-2 B



178×128×85 mm

α, β und l<sub>co</sub> direkt ablesbar.  $l_{co}$ : 0,5  $\mu$ A bis 45  $\mu$ A.  $\alpha$ : 0,833 bis 0,995.  $\beta$ : 0 bis 200. Prüft auch Effekttransistoren. Für Effekt-transistoren 0—900 μA. DM 94.—



20, 25, 55 Konisch, DM 26.—

Röhrenprüfgerät TC-2



Prüft alle modernen Empfängerröhren. Europäische, amerikanische und japanische Röhrentypen 230×210×80 mm DM 130.-

verstarkung über 30 dB. Röhren: 2 Stck. 6 BA 6, 1 Stck. Selengleichrichter. 20×23×16 cm.
Gewicht: 4 kg. Betriebsfertig DM 155.—Baukasten m. montiert. Teilen DM 125.—

Prüfgenergtor TO-3A Transistor., 5 feste Frequenzen 455, 535, 640, 1000, 1400, 1620 Kc Toleranz ± 2%. Mod. oder unmod. Eingebauter Tonfrequenzgenerator 800 Hz Se-parat. Tonausgang. parat. T

Hochspannungsmeßkopf 25 000 V. Paßt für alle unsere Geräte mit 20 000  $\Omega/V$  Empfindlichkeit. Netto DM 14.-

Prüfschnüre mit Spitze, extra hohe Qualität per Paar DM 3.—

Meßgleichrichter für alle

DM 3.-

TR-6 M



 $\pm$  2%. =: 20 000  $\Omega$ /V.  $\sim$ : 10 000  $\Omega$ /V. 10 — 50 — 250 — 500 — 1000 V. 50 mV/50

105×160×60 mm DM 60.-



2υ 000  $\Omega$ /V.  $\sim$  und = : 6, 30, 120, 1200 V. = : 60 μA, 6, 60, 600 mA. Ohm: 1  $\Omega$ —10  $M\Omega$  R x 1, x10, x100, x1000, 1000 p fbis 0,2 μF, 100 p f—0,01 μF. 30 H...3000 H. —20... + 17 dB. PM 59.—

Vielfachmeßgeräte, gute Qualität. Genauigkeitsklasse 2 bis 3 % TR-4 H

 $\pm$  3%. DC: 20 000  $\Omega$ /V.  $\sim$ : 10 000  $\Omega$ /V — 10 — 50 — 250 — 500 — 000 sz/ v 250 — 500 — —: 50 MV/50 25 — 

105×135×40 mm DM 51.-



TR-4 E 2000  $\Omega/V$ . = und  $\sim$  : 10, 50, 250, 1000 V. = : 500  $\mu$ A, 25, 500  $\mu$ A. 1  $\Omega$  —1 M $\Omega$ . R x 1, x 10, x 100, 0,001—0,1  $\mu$ F, —20 — +  $\pi$ A dR 36 dB.

TP-3 A



 $\pm$  3%. = und  $\sim$  2000  $\Omega/V.$  10, 50, 250, 500, 1000 V. =: 0,5 2,5, 25, 250mA. Ohm: 10 k $\Omega$ , 100 k $\Omega$ , 1 M $\Omega$ .

 $30 \times 95 \times 38$ DM 31.-



TR-6 B 4000  $\Omega/V$ . ~ und =: 10, 50, 250, 1000 V. =: 50  $\mu$ A, 2,5, 25, 250 mA.  $\Omega$ —5 M $\Omega$ . R x 1, x 10, x 100, x 1000. —20 — + 36 dB. ie 5 x 160 x 60 mm DM 47.—

Sie können viel Geld sparen! Importieren Sie Ihre Geräte selbst! Auf Grund der neuen Währung und auf Grund unseres großen, immer mehr ansteigenden Exportes sind unsere Preise jetzt niedriger als jemals vorher. Alle Vielfachgeräte werden komplett mit Batterien, Prüfschnüren und Prüfspitzen geliefert. Die Netzanschlußgeräte sind alle für 220 V/50 Hz eingerichtet. Lieferung sofort portofrei an Ihre Adresse per Post, Nachnahme. 9% Zoll und 6% Umsatzsteuer werden vom Deutschen Bund einbehalten. Ihre Gesamtkosten werden dann 15%, höher als die angegebenen Nettopreise. Alle Ersatzteile ab Lager zu sehr niedrigen Preisen lieferbar. (Radioempfänger 12% Zoll und 6% Steuer.) Bei Abnahme für über DM 500.— geben wir 5% Nachlaß.

Vansövägen 1, Älvsjö II, Schweden

RTM-REGELTRANSFORMATOREN stufenios regelbar, universall verwendbar

Firma SYDIMPORT

0-240 V DM 118. -1.4 Amp. 0-300 V 1,0 Amp. DM 132. -

in formschönem Pult-Bakelitgehäuse m. Voltmesser, Signall., Sichg., Schalter und Skala.

- Prospekt anfordern -

ING. H. RIEDHAMMER

(13b) Baldham b. München Telefon 081 06-83 07 Reparaturkarten TZ-Verträge

Reparaturbücher, Nach-weis- und Kassenblocks sowie sämtl. Drucksachen liefert gut und preiswert



DRWZ., Gelsenkirchen 4

Gleichrichter-Elemente

auch i. 30 V Sperrspg. und Trafos liefer

H. Kunz KG

Gleichrichterbau Berlin-Charlottenburg 4 Giesebrechtstraße 10 Telefon 32 21 69

Verlangen Sie kostenlos unsere Kataloge

Theoretische Fachkenntnisse in

# Radio- und Fernsehtechnik

durch Christiani-Fernkurse Radiotechnik und Automation. Je 25 Lehrbriefe mit Aufgabenkorrektur und Abschlußzeugnis. 800 Seiten A4, 2300 Bilder, 350 Formeln. Studienmappe 8 Tage zur Probe mit Rück-gaberecht. (Bitte gewünschten Lehrgan Radiotechnik oder Automation angeben.)

Technisches Lehrinstitut Dr.-Ing. Christiani **Konstanz Postfach 1952** 

Bedeutendes

#### Hörgerätefachinstitut

mit 5 Niederlassungen in Düsseldorf, Rheydt, Saarbrücken, Saarlouis und St. Wendel sucht für die Zentralwerkstatt jüngeren

#### Rundfunkmechaniker oder Niederfrequenztechniker

(mögl. franz. Sprachkenntnisse)

mit abgeschlossener Ausbildung. Einwandfreier Charakter, gute Umgangsformen, Einfühlungsvermögen sind Voraussetzung f. den Umgang mit unserer schwerhörigen Kundschaft. Wir sind ein junges, aufstrebendes Fachunternehmen und führen Hörgeräte aus aller Welt.

Wir bieten neben ausgez. Aufstiegsmöglichkeiten gutes Betriebsklima und umfangreiche Spezialausbildung auf unserem Fachgebiet.

Angebote mit den üblichen Bewerbungsunterlagen an



Fachgeschäft f. Hörgeräte HENKEN & MULLER Inh. G. Müller

Saarbrücken, Viktoriastraße 4, Telefon 27965

#### ROBERT-SCHUMANN-KONSERVATORIUM DER STADT DÜSSELDORF

Direktor: Prof. Dr. Joseph Neyses

#### Abteilung für Toningenieure

Ausbildung von Toningenieuren für Rundfunk u. Fernsehen, Film und Bühne, öffentliche und private Tonstudios und die elektroakustische Industrie

Auskunft, Prospekt und Anmeldung: Sekretariat Düsseldorf, Fischerstraße 110/a, Ruf 446332



#### RIM) -Qualitätsverstärker

zum Selbstbau und betriebsfertig

Allzweck-, Hi-Fi- und Stereo-Vollverstärker zur Beschallung kleiner u.größter Flächen. Moderne, formschöne Flachgehäuse.

Wir stellen vor :

#### RIM-Imperator

Ein Spitzengerät der Hi-Fi- und Stereotechnik Leistung: 2x20 Watt Kompletter Bausatz: DM 398.-Ausführliche Baumappe: DM 6.-Betriebsf. mit 1/2 Jahr Garantie DM 549.-



RADIO-RII



München 15 Bayerstraße 25

# Richtstrahlantennen!

Es gibt viele Antennen für Richtempfang und für Senden in einer Richtung. Ein Experte auf diesem Gebiet ist der schweizerische Funkamateur Arthur Baumgartner. Er hat in den letzten Jahren eine Antenne entwickelt, die in ihrer Einfachheit nicht zu schlagen ist. Wollen Sie mehr über diese Antenne wissen, so bestellen Sie die Broschüre über die Richtantenne des schweizerischen Funkamateurs HB 9 CV. Die Broschüre erschien im Verlag der Körnerschen Druckerei und Verlagsanstalt in Gerlingen, Postfach 9 und kostet DM 4.20. Bitte richten Sie Ihre Bestellung an die Firma Körnersche Druckerei und Verlagsanstalt in Gerlingen/Württ, Postfach 9, Postscheckkonto 1180, Stuttgart.

#### Jap. Transistor-Radios - Neueste Modelle

Einmalige Leistung bei kleinsten Abmessungen

Toptone 6 Transistor
Toptone 6 Tr. Mittel/Lang
DM 69.50
Toptone 2 Transistor
DM 29.—

Preise einschließlich Ledertragetasche, Ohrhörer, Batterie

#### 9-V-Anodenbatterien

Netto DM 1.20

#### Zweites Fernsehprogramm ohne Zeitverlust

mit einem TVE-Konverter

Kein Gerätetransport, kein Sägen, Bohren, Löten, mit wenigen Handgriffen empfangsbereit. Dem Einbautuner überlegen – höchste Verstärkung verbürgt einwandfreies Bild, selbst in schwierigen Lagen

Ein Spitzenerzeugnis in formschönem, zweifarbigem Gehäuse Netto DM 118.50

FUBA UHF-Fensterantenne, 7 Elemente für Kanäle 14-30 u. 29-53 (b. Bestellung angeben) DM **15.**— netto

Gelegenheit

Gelegenheit

#### AKKORD-Autotransistor M/L Export

ein universelles Gerät f. Auto, Camping u. Heim kompl. mit allem Zubehör, wie zusätzl. Wagenlautsprecher u. 4-Watt-Endstufe, solange Vorrat **netto nur DM 168.50** 

LEOPOLD H. MEYER FRANKFURT/MAIN

Mainzer Landstraße 178 Telefon 333532

#### Techniker- und Ingenieurschule

Abteilung C/FS

#### Weiler im Allgäu

Semesterweise laufende Fachklassen für Techniker-, Werkmeister- und Ingenieur-Ausbildung in den Fachrichtungen: Maschinenbau, Elektrotechnik, Funktechnik, Kraftfahrzeugtechnik, Bautechnik mit Holzbau. Interessenten erhalten das **Lehrprogramm 5** zugesandt.

Auch Ausbildung ohne Berufsunterbrechung in den gleichen Fachrichtungen zum Techniker, Werkmeister und Ingenieur durch das angeschlossene HÖHERE TECHNISCHE LEHRINSTITUT. Auf dem Wege des Fernunterrichts erhalten Sie das theoretische Wissen, mit abschließenden vierwöchigen Tageskursen im institut. Fahrt- und Aufenthaltskosten sind in den Lehrgangsgebühren enthalten. Interessenten erhalten das Lehrprogramm I zugesandt.

# Sonderangebot! PHILIPS

"Jeanette" (Restposten)

mit eingebauter elektrischer Weck- und Schaltuhr

nur 139.- Batterie 2.-

Anzahlung DM 15.- (einschl. Batterie), 10 Monatsraten à 13.50

7 Transistoren + 1 Diode • Mittelwelle • 5 Kreise • Gegentakt-Endstufe Ferritantenne • Polystrolgehäuse, schwarz • 232×88×37 mm • 750 g



Radio- und Elektro-Handlung (20 b) B R A U N S C H W E I G Ernst-Amme-Straße 11, Fernruf 21332

# Thre große Chance!

Radio-, Elektronik- und Fernsehfachleutewerden immer dringender gesucht!

Unsere modernen Fernkurse in

#### **ELEKTRONIK, RADIO- UND FERNSEHTECHNIK**

mit Abschlußzeugnis, Aufgabenkorrektur und Betreuung verhelfen Ihnen zum sicheren Vorwärtskommen im Beruf. Getrennte Kurse für Anfänger und Fortgeschrittene sowie Radio-Praktikum und Sonderlehrbriefe.

Unsere Kurse finden auch bei der Bundes wehr Verwendung lande sie der Bundes werde sie der Bundes wehr Verwendung lande sie der Bundes werde sie der Bunde sie der Bundes werde sie

Ausführliche Prospekte kostenlos.

#### Fernunterricht für Radiotechnik

Ing. HEINZ RICHTER Abt. 1

GUNTERING, POST HECHENDORF, PILSENSEE/OBB.



Liefert alles sofort und preiswert ab Lager

Lieferung nur an Wiederverkäufer!

Preiskatalog 1961/62 wird kostenlos zugesandt!

Inh. E. & G. Szebehelyi

TONBÄNDER BASF: Lagerreste PES 26 15/480 DM 14.—
PES 26 11/240 DM 7.—. BILDRÖHREN 17 DCP 4 = AW 43-80, fabrikneu, fehlerfrei DM 70.—. Mengenrabatte nach Vereinbarung.

#### HAMBURG - GR. FLOTTBEK

Grottenstr. 24 · Ruf: 827137 · Telegramm-Adr.: Expreßröhre Hamburg



## KONTAKT 60

das zuverlässige Kontaktreinigungs- und Pflegemittel in der praktischen Spraydose.

JETZT MIT SPRUHRÖHRCHEN

#### **KONTAKT 61**

ein universelles Reinigungs- und Korrosionsschutzmittel für neue Kontakte sowie elektromechanische Triebwerkteile. Ebenfalls in Sprühdose.

KONTAKT-CHEMIE-RASTATT

Postfach 52

Auch Sie brauchen zur sinnvollen Fernsehgerätereparatur einen Wobbel-Oszillographen



konkurrenzlos billig zu beziehen durch

Fa. L. KRETZSCH, REISEN

ü. Weinheim (Bergstr.)

Auf Wunsch Prospekt

#### ELEKTRONIK Kleinteile



liefert preisgünstig (verlangt Prospekt)

Jaeger & Co. AG Bern (Schweiz)

A MERIKA NISCHE STECKERTYPEN ab Lager PJ 054 PJ 055 PJ 068 JJ 026 JJ 033 JJ 034 JJ 133 JJ 134 SO 239 M 359 PL 258 PL 259 U77/U U79/U U. andara Typen nach Ver-spraunsnummern.

sorgungsnummern. ELOMEX Prien a. Chiemsee Seestraße 6



LORENZ SIEMENS TELEFUNKEN VALVO

ORIGINAL ROHREN ORIGINAL GARANTIE

Wiederverkäufer erhalten hohen Einführungsrabatt. Ab 50 Stück zusätzlich Mengenrabatte

Vertreter auf Provisionsbasis gesucht

THEODOR ESCH, Elektro-Radio-Großhandel

(22 a) Lobberich/Ndrh. - Rosental 12-18 Telefon 2615

#### Meßgerätekauf leicht gemacht!







#### 10% Anzahlung, Rest in 10 Monatsraten!

Kein Risiko, da Rückgaberecht innerhalb von 10 Tagen! Fordern Sie bitte unseren kostenlosen Meßgeräte-Katalog 1961 an:



Radio Völkner, Braunschweig Ernst-Amme - Str. 11, Ruf 21332

#### RÖHREN-Blitzversana Fernseh - Radio - Tonband - Elektro -Geräte - Teile

DY 86 ECH 42 ECH 81 2.80 PL 83 PY 81 PY 82 PY 83 EY 86 PC 86 2.45 2.75 2.80 2.85 2.95 2.45 4.70 **EF 86** 2.90 3.50 6.90 PL 81

Katalog kostenlos - Versand Nachnahme an Wiederverkäufer

Heinze Großhandlung, Coburg, Fach 507

#### Reparaturen

in 3 Tagen gut und billig

LAUTSPRECHE A Ween SENDEN/Jller

#### Saba-Telerama-Fernseh-Projektionstruhe

einschließlich UHF-Teil, Fernsteuerteil u. Bildwand. Listenpreis DM 2999. -

Umständehalber für DM 1900. - zu verkaufen.

MOLLER . (16) BENSHEIM/Bergstraße Hauptstraße 80-82 - Telefon 21 67



#### INDUSTRIE-FERNSEH-

CHASSIS Mod. 1960 in gedruckt. Schaltg., kompl. best. u. abgegl. m. FTZ-Prüf-Nr., Ablenkeinheit geeign. f. AW 43–88 od. Kurzrohr 43–89. Gr.: 45 × 36 × 16 cm 275. 275.-

Gr.: 45 × 36 × 16 cm

KOFFERGEHAUSE, Rahmen, Schutzscheibe, Lautsprecher, Rückwand (47 × 37 × 30 cm)

J9.50

INDUSTRIE-CHASSIS 1960/61 f. 43 od. 53 cm. Gedruckte Schaltung m. Telef. od. Valvo-Orig.-Rö., abgegl., f. UHF vorber. 42 × 54 × 15 cm

TISCHGEHAUSE, 53, außen 59×47×43,5 cm

J1SCHGEHAUSE, 53, außen 60×96,5×52 cm

HERZU EINBAU-ZUBEHÜR für 53-cm-Bi.-Rö. mit Lautsprech. u. Kontrastscheibe f. Tischgerät 26.50

desgl., mit Schallwand für Standgerät

KOMPLETTER BAUSATZ mit Tischgehäuse und Bi.-Rö., AW 53–88 m. kl. Kratzern

J38.-desgl., mit Standgehäuse, wie oben

KOMPLETTER BAUSATZ mit Tischgeh. u. Bi.-Rö., AW 59–90, fabrikneu AW 59–90, fabrikneu m. Standgehäuse

529 .-LOEWE-OPTA-HELLAS-DUPLEX-AUT.-STEREO-Spitzen-Super-Chassis, 9 Rö., 22 Krs. (U-2×K-M-L). 4 Lautsprecher, Ferritantenne, Gehäuse (U-2×K-Gehäuse-

AW 43-20 AW 53-88 138.75 153.75 MW 43-64 MW 43-69 119.50 172.50 8 89.-8 95.-AW 53-90 176.25 MW 53-80 43 cm, 110°, AW 43-88 53 cm, 110°, AW 53-88 Bildröhren m. kl. Kratzern 53 cm, 110°, AW 53-86 59 cm, 110°, AW 59-90 FS-Koaxialkabel vers. 60 Ω 1 Meter DIODE f. DETEKTOR u. TRANS.-GERÄTE NF-TRANSISTOR, 8 W, ähnl. OC 16 HF-TRANSISTOR, ähnlich OC 45 HF-TRANSISTOR OC 170 5.45 OC 171 Kratzern 118.--.95 -.40 5.45 OC 171 6.75 RÜHREN besonders billig!
2 65 ECC 82 2.95 PCL 82
1.65 ECL 80 3.20 PL 82
-.75 EE 183 5.25 PY 88
-.95 EL 84 3.15 UBF 80 3.95 3.25 AZ 41 CC 2 5.65 3.65 CF 3 -,95 EL 84 3.15 UBF 80 3.65 EAA 91 2.20 PCC 189 7.25 UL 41 3.45 mit 14 Tagen Ubernahme-GARANTIE!

PHILIPS NETZTRAFO, 130 mA 110/220 V, 1×250 V, 1×6,3 V, 1 Stdx. 11.59, 5 Stdx. à 19.50, 10 Stdx. à 9.50 PHILIPS AUSGANGSTRAFO, 4 W, 3,5 kΩ: 5 Ω

1 Stück 2.50 5 Stück à 2.25 10 Stück à 2.-
12 kΩ 1 Stück 3.50 5 Stück à 3.25 10 Stück à 3.--CF 3

FABRIKNEUE Bi.-Rö., & Mte. GARANTIE!

TEKA AMBERG/OPF., Abt. 20

#### UNIVERSAL-VORSCHALT-



UNIVERSAL-VORSCHALTTRANSFORMATOR
Preßstoffgehäuse, Universalgerät zum Anschluß von RADIO-,
FERNSEH-, ELEKTROGERÄTEN bis 300 W bei Unter- und
Überspannungen. Einstellbar
auf 110/117/127/150/200/220/240 V oder als Vorschaltgerät bei 110-V-Geräten am 220-V-Netz 29.50
Besonders geeignet für 110-V-US-Geräte am 220-VNetz. US-Zwischenstecker dazu
TELFFUNKEN - ZWEIKANAL - STEREO - VERSTÄRKER S 81. Ihr Rundfunkgerät in Verbindung
mit einem Stereoplattenspieler u. zweier Außenlautsprecher wird dadurch zu einer Vollstereoanlage. 2 Rö., 1 Tgl., fr. Lpr. 135.— nur 59.—
2 dazu passende perm.-dyn. Lautsprecher, Breitbandsystem 4 W Stück nur 24.75
EINKREIS-AUDION-SPULENSATZ (K-K-M-L) mit
Wellenschalter Wellenschalter
SECHSKREIS-SUPER-SPULENSATZ mit Wellenschalter (K-K-M-L) mit Schaltbild
18.95
UKW-BAUSTEIN L-Abst., 3 Bandf., 11 Krs. 19.95
hierzu Rö. ECC 85 3.75 oder UCC 85 4.25

Mindestauftragswert DM 10.—. Versand per Nach-nahme zuzügliche Versandspesen. Teilzahlung bis zu 12 Mte. Fordern Sie Liste T 27 an.

Eine einmalige Gelegenheit zur Einarbeitung in die Impulstechnik und die elektronische und elektromechanische Analogrechentechnik können wir jüngerem

## Ingenieur (TH oder HTL) und Techniker (Rundfunkmechaniker)

geben, der die Tätigkeit in einer im Voralpenland gelegenen Großrechenanlage zu schätzen weiß.

Wir bieten in einer völlig unkonventionellen Betriebsatmosphäre Mitarbeitern mit ausreichenden techn. englischen Sprachkenntnissen und Mut zur selbständigen Verantwortlichkeit einen äußerst vielseitigen Tätigkeitsbereich und beste Aufstiegsmöglichkeiten.

Bewerbungen erbitten wir an

#### Solartron Elektronik GmbH

München 15, Bayerstraße 13



SUCHT FUR DAS PRUFFELD

Rundfunktechniker · Fernsehtechniker

FUR DIE ARBEITSVORBEREITUNG

Leiter der Gruppe "Zeitaufnahme" HF-Techniker für die Erstellung von Stücklisten

FUR DIE BETRIEBSABRECHNUNG

#### Junakaufmann

für interessante betriebswirtschaftliche Aufgaben

Suchen Sie eine hochbezahlte Position mit besten Aufstiegs-Chancen bei ausgezeichnetem Betriebsklima, dann richten Sie Ihre Bewerbungsunterlagen mit Lohn- bzw. Gehaltsansprüchen und Angaben Ihres Wohnraumbedarfes noch heute an unser Personalbüro. Ober- und Mittelschule am Ort. Denken Sie auch daran, daß unser fortschrittliches Werk in einer gesunden, landschaftlich reizvollen Gegend des Harzes lieat.

IMPERIAL

RUND.FUNK- UND FERNSEHWERK GmbH OSTERODE/HARZ

**Führendes** Fachgeschäft in Ulm/D. sucht

#### RADIO-FERNSEH-TECHNIKER

45-Stunden-Woche, Samstag frei, angenehmes Betriebsklima, interessante Sozialleistungen, Beihilfe bei Zimmer-

CHRISTIAN REISSER Ulm/Donau, Hinterm Münster

Meisterbetrieb, mit Meßgeräten bestens ausgerüstet (Fachgeschäft im Raum Niederbayern), sucht ab 1. Januar 1962 für etwa 16 Monate erstklassigen

#### Radio- und Fernsehtechniker

für Werkstatt, Kundendienst und Verkauf mit der Gelegenheit sich auf die Meisterprüfung Frühjahr 1963 vorzubereiten. Theoretische Förderung möglich. Meisterstück kann in der Freizeit angefertigt werden. Ausführliche Zuschriften mit Gehaltswünschen, Zeugnisabschriften und Lichtbild unter Nr. 8666 D an den Franzis-Verlag.

Gesucht zu möglichst sofortigem Eintritt

#### Radio-Fernseh-Techniker

Verlangt wird: gute Ausbildung, Praxis und zuverlässiger

Charakter.

Wir bieten: beste Bezahlung und gute Unterkunft, ange-

nehmes Betriebsklima, große Selbständigkeit. Aufstiegsmöglichkeit.

Angebote mit Bild an

RADIO-MULLER,

Lugano-Magliaso (Schweiz)



#### REKORDLOCHER

In 11/2 Min. werden mit dem REKORD-LOCHER einwandfreie Löcher in Metall und alle Materialien gestanzt. Leichte Handhabung – nur mit gewöhnlichem Schraubenschlüssel. Standardgrößen von 10-61 mm Ø, DM 9.10 bis DM 49. -

W. NIEDERMEIER - MUNCHEN 19 Nibelungenstraße 22 - Telefon 670 29



Bi, C3c, C3e, E2c, Ce.C3b, C3d,E8oL, EL8, EBF21, AZ21

etc. in größeren Posten abzugeben. R. Simon, (13b) Tüssling, Oberbayern,Mendelstraße 9

Wegen Umdisponierung in der Fertigung hoch-

Glimmer-Kondensatoren Mica - Dur

der Firma Richard Jahre einzeln und in größe-

ren Stückzahlen abzugeben

Bf. 48.3/30 000 / 5 / 50 Preis pro Stück

Bf. 48.3/10 000 / 5 / 50 Preis pro Stück

Bf. 48.3 / 5 000 / 5 / 50 Preis pro Stück

Bf. 48.1 / 1 000 / 5 / 50 Preis pro Stück

Bf. 48.1 / 500 / 5 / 50 Preis pro Stück DM 6.30 DM 4.58 DM 3.32 DM 2.96 Fa. Ing.-Büro E. Kappes, Darmstadt, Riedeselstraße 3

WIDERSTANDE - BETTE



KONDENSATOREN - SHIVE





DAS LAGER IN DER TASCHE

München · Landsberger Straße 87 Düsseldorf · Kölner Straße 322

FUNKS CHAU 1961 / Heft 20

4000 Menschen beschäftigen wir bereits in unserem Betrieb, der vorwiegend auf dem Gebiete des Zubehörs für die Rundfunk- und Fernsehindustrie arbeitet.

Durch die fortschreitende Entwicklung auf diesem Gebiet ergeben sich immer wieder neue Aufgabengebiete, für die wir Mitarbeiter gewinnen möchten.

So braucht jetzt unsere Entwicklungs-Abteilung

#### einen Hochfrequenz-Techniker

für unser Entwicklungs-Labor. Es erwartet ihn hier die Aufgabe, elektrische Untersuchungen und Messungen an Hochfrequenzbauteilen vorzunehmen;

#### einen Elektro-Ingenieur

Ingenieur-Schule, Ausbildungsrichtung Schwachstromtechnik.

Sein Arbeitsgebiet würde sein: Entwicklung von schwachstromtechnischen Bauelementen für die Rundfunk- und Fernsehindustrie, wobei das Hauptgewicht seiner Arbeit auf der Lösung mechanischer und feinmechanischer Probleme liegen würde;

#### tüchtige Feinmechaniker

für die Anfertigung von Entwicklungsmustern und Hilfswerk-

In unserem modernen Betrieb finden Sie ein gutes Betriebsklima, 44-Stunden-Woche, Mittagessen in der Werkskantine und saubere, helle Arbeitsräume.

Gerne sind wir Ihnen auch bei der Beschaffung von Wohnungen behilflich.

Dürfen wir mit Ihrer Bewerbung rechnen? Bitte fügen Sie dieser die üblichen Unterlagen (Lichtbild, Lebenslauf und Zeugnisabschriften) bei und nennen Sie uns auf jeden Fall auch Ihre Gehalts- bzw. Lohnwünsche.



Zuschriften erbeten an-

Elektrofeinmechanische Werke **BAD NEUSTADT/Scale** 

Personalbüro

Wir suchen

#### Rundfunkund Fernsehtechniker

mit Reparaturpraxis

für den Einsatz in verschiedenen Großstädten der Bundesrepublik.

#### Wir bieten:

Gute Weiterbildungsmöglichkeit, 5-Tage-Woche (44 Stunden), leistungsgerechte Bezahlung, zusätzliche Altersversorgung durch betriebliche Pensionskasse.



Bewerbungen mit handgeschriebenem Lebenslauf, Lichtbild, Zeugnisabschriften und Angabe der Gehaltswünsche erbeten an die

#### DEUTSCHE PHILIPS GMBH

Personalabteilung HAMBURG 1 - MONCKEBERGSTRASSE 7 (Eingang zur Zeit nur Bugenhagenstraße 10)

#### minifon

Wir suchen per sofort für unser Verkaufsbüro

#### Kundendienst-Techniker für Diktiergeräte

Angebote sind zu richten an:



#### Rundfunk- und Fernsehtechniker

von führendem Fachgeschäft in Kleinstadt im Sauerland gesucht. Gehalt nach Verein-

Bei Wohnungssuche sind wir behilflich.

Angebote unter Nr. 8679 U

Führendes Fachgeschäft, Nähe Stuttgart, sucht

#### Rundfunk- und Fernseh-Techniker

bei bester Bezahlung, Zimmer mit Heizung und fließend. Wasser kann geboten werden.

Zuschriften erbeten unter Nr. 8678 T

#### Meister oder Techniker

mit längerer Berufserfahrung, aus der Radio- und Fernsehtechnikerbranche, sofort oder später gesucht. Übertarifliche Bezahlung.

RADIO HESSLER Ingenieur- u. Meisterbetrieb Dortmund · Münsterstraße 76

#### Leiter der Konstruktionsabteilung

für Anlagen der kommerziellen Funktechnik

sowie mehrere

#### HF-Ingenieure und HF-Techniker

für interessante Entwicklungsaufgaben für unser Werk Fridolfing/Obb. gesucht.

Bewerbung mit den nötigen Unterlagen, Gehaltsforderungen und frühestem Eintrittstermin erbeten an Fa. G. Haeberlein, Fabrik für Funk- u. Meßtechnik, Geschäftsleitung München 22 Gewürzmühlstraße 5



Wir suchen zum sofortigen Eintritt:

#### Rundfunkmechaniker

für Abgleicharbeiten auf dem Fernsehempfangsgebiet und für Reparaturen von UKW-Funksprechanlagen, Hörgeräten, Fotoblitzen und Antennenverstärkern. - Nach Vereinbarung evtl. Halbtagsarbeit.

Wir bieten: Günstige Arbeitsbedingungen, 5-Tage-Woche (44 Stunden), verbilligtes Essen und verschiedene andere soziale Vorteile. – Bewerber wollen sich bitte montags bis freitags von 8 bis 15 Uhr in unserem Einstellungsbüro melden.

#### DEUTSCHE ELEKTRONIK GMBH

BERLIN-WILMERSDORF, FORCKENBECKSTRASSE 9/13 Tochtergesellschaft der ROBERT BOSCH GMBH, Stuttgart

Günstige Fahrverbindungen.

Wir sind ein Großunternehmen der Metallindustrie im süddeutschen Raum und suchen für unsere Abteilung Routine-Meßwesen einen fachlich besonders qualifizierten

#### Mitarbeiter

Bewerber mit einer mehr als fünfjährigen praktischen, weitgehend selbständig ausgeführten Tätigkeit in der Montage, Wartung oder Reparatur von

- elektronischen Meßgeräten
- Überwachungs- und Registrieranlagen
- elektrischen Rechenmaschinen
- Regel- und Steuerungsanlagen
- Rundfunk-, Fernseh- und Tonbandgeräten

halten wir für besonders geeignet.

Eine Fachausbildung mit einem der Gesellenprüfung entsprechenden Abschluß auf dem Gebiet für Elektronik bzw. Schwachstromtechnik ist Voraussetzung. Erfahrungen im Service, wobei es weniger auf die Art der bisher bearbeiteten Apparate ankommt, sind

Der Bewerber soll in der Lage sein, einer kleinen Gruppe von Mitarbeitern des Meßteams vorzustehen.

Bewerber, die die fachlichen Voraussetzungen besitzen und an einer gesicherten Dauerstellung interessiert sind, wollen ihre Unterlagen mit handgeschriebenem Lebenslauf, Lichtbild und Zeugnisabschriften einreichen unter Nr. 8682 A an den Franzis-Verlag.

Wir suchen für Bremen:

Diplom-Ingenieure Fachschul-Ingenieure Konstrukteure Meister Techniker Mechaniker

der Fachrichtungen

Hochfrequenztechnik, Elektronik für Entwicklung, Fertigung, Prüffeld.

#### Wir bieten:

Gute Arbeitsbedingungen, leistungsgerechte Bezahlung, 5-Tage-Woche, zusätzl. Altersversorgung durch betriebl. Pensionskasse. Schriftliche Bewerbungen mit handgeschriebenem Lebenslauf, Lichtbild, Zeugnisabschriften und Angabe der Gehaltswünsche erbeten an die



#### DEUTSCHE PHILIPS GMBH

Personalabteilung

HAMBURG 1 - MONCKEBERGSTRASSE 7

Wir suchen



#### Diplom- und HTL-Ingenieure

für interessante Entwicklungsaufgaben auf dem Fernsehgebiet sowie für spezielle Probleme des Fernsehens. Die Bewerber sollen eine gründliche theoretische und praktische Ausbildung besitzen und auf dem Fernsehgebiet über gute Berufserfahrung verfügen.

#### Jung-Ingenieure

mit Kenntnissen in der Transistor-Technik.

#### Normen-Ingenieur

zum Ausbau unseres Normenbüros. Neben der Beherrschung der DIN- und Zeichnungsnormen werden gute theoretische und praktische Kenntnisse in Werkstoffkunde, konstruktiven Grundlagen und Passungssystemen erwartet.

#### Refa-Fachleute

nach Möglichkeit gelernte Rundfunkmechaniker mit Refa-Grundschein I und II für die Arbeitsgestaltung, Erstellung von Arbeitsplänen und für die Vorgabezeitermittlung in unseren Vorund Bandmontagen.

#### Rundfunk- und Schaltmechaniker

für interessante Tätigkeiten in unseren Laboratorien und im Prüffeld.

Richten Sie zunächst Ihre schriftliche Bewerbung an uns mit dem Kennwort des Arbeitsgebietes und der Fachausbildung. Lichtbild, handschriftlicher Lebenslauf, Zeugnisabschriften, Gehaltsund Wohnungswünsche sollten dabei nicht fehlen. Ihre Zuschrift wird vertraulich geprüft Wir antworten schnell.

SABA Villingen/Schwarzwald

#### BROWN BOVERI BADEN (Schweiz)

Hochfrequenz- und elektronische Anlagen

Wir suchen für unsere elektronischen Abteilungen:

#### Sachbearbeiter

f. techn. Beschreibungen

zur redaktionellen Überarbeitung von Beschreibungen und Betriebsanleitungen für Geräte der Hochfrequenztechnik und Elektronik in enger Zusammenarbeit mit dem Entwicklungslabor.

Erwünscht sind gewandter Schreibstil, Kenntnisse der HF-Technik sowie französische und englische Sprachkenntnisse. Für initiative Bewerber mit Freude an administrativen Arbeiten bietet sich eine interessante und ausbaufähige Tätigkeit.

#### Konstrukteur

für konstruktive Bearbeitung von elektronischen Geräten bis zur Fabrikationsreife in enger Zusammenarbeit mit dem Entwicklungslabor.

Verlangt werden umfassende Kenntnisse der Fabrikationsverfahren sowie mehrjährige Erfahrung in der Gerätekonstruktion.

#### Zeichner-Konstrukteur

für Konstruktionsaufgaben auf dem Gebiet des HF-Gerätebaues. Verlangt werden abgeschlossene Zeichnerlehre und womöglich Praxis in der Detail-Konstruktion

#### Radio-Elektriker

für vielseitige Tätigkeit im Entwicklungslabor oder Prüffeld für Richtstrahl- und Funksprechgeräte. Eventuell auch Einarbeitung für spätere Übernahme von selbständigen Montageaufgaben im In- und Ausland.

#### Geboten werden:

5-Tage-Woche, leistungsfähige Pensionskasse, werkeigenes Gemeinschaftshaus für Verpflegung und Freizeitgestaltung, technische Fortbildungskurse, günstige Wohnverhältnisse, gutes Arbeitsklima, bei Eignung Aussicht auf entwicklungsfähige Dauerstelle.

Die Bewerber werden gebeten, sich unter Kennziffer 852 mit unserem Personalbüro schriftlich in Verbindung zu setzen.

AGBROWN, BOVERI & CIE., Baden (Schweiz)

#### Radio- und Fernsehtechniker

von führendem Fachgeschäft im Schwarzwald, Nähe Pforzheim, gesucht. Gehalt nach Vereinbarung. Unterkunftsmöglichkeit mit fl. kaltem u. warmem Wasser vorhanden. Verlangt wird absolut sicheres selbständiges Arbeiten in der Werkstatt eines Einzelhandelsgeschäftes. Führerschein erwünscht. Bei verheirateten Bewerbern ist die Fa, bei der Wohnraumbeschaffung behilflich. Zuschriften unter Nr. 8668 G

#### Fernseh-Techniker gesucht! **Hohes Gehalt**

Wohnung kann besorgt werden.

Radio - Müller (16) Bensheim / Bergstraße Hauptstraße 80-82 Telefon 21 67 und 35 90

#### Bundesbehörde

sucht

Fernmeldetechniker für Betreuung von Fernmeldeelnrichtungen (Funk-und Bildfunk). Vergütung erfolgt nach VI b BAT. Bewerbungen erbeten an :

**Deutscher Wetterdienst** Zentralamt, Offenbach (Main) Frankfurter Straße 135

#### Radiomechaniker

zur Zeit Techniker bei KW-Rundfunkempfangsstation, 27 Jahre, ledig, gebildet, zuverlässig, Englischkenntnisse, möchte sich ver-

Angeb. unt. Nr. 8669 H

#### Rundfunk-Fernsehtechnikermeister

langjährige Berufspraxis, 40 Jahre, verheiratet, wünscht sich zu verändern.

Zuschr. erbeten unter 8676 R

#### Rundfunk-Fernseh-**Elektro-Techniker**

gute Erscheinung, 30 Jahre, gute Verhältnisse, wünscht Bekanntschaft mit branchenkundiger Dame. Diskretion zugesichert.

Zuschr. unter Nr. 8670 J

#### STELLENGESUCHE UND - ANGEBOTE

Versierter Vertreter, branchenkundig, Raum: Nie-dersachsen, Harz, im Elektrogroß- u. Einzelhandel gut eingeführt, sucht sich verändern Angebote unter Nr. 8684 D

Junger Rundf.- und Fernsehtechnikermeister, in ungekündigter Stellung, ungekündigter Stellung, 25 Jahre alt, mit Führer-schein, sucht verantwor-tungsvolle und ausbau-fähige Stelle im Einzel-handel. Bevorzugt wer-den Angebote, wo späden Angebote, wo spä-tere Geschäftsübernahme möglich ist. Angebote unter Nr. 8686 F

Techniker, 33 Jahre alt, ledig, KW-Amateur. Seit Jahren in der Rundfunkindustrie tätig, mit vielen Erfahrungen auf dem Halbleitergebiet, vertraut m. der statistischen Qualko, guten englischen Kenntnissen, z. Z. Grupenglischen Kenntnissen, z. ... penleiter, sucht zum 1. Jan. 1962 selbständige u. verantwortungsvolle Tä-tigkeit. Angebote unter Nr. 8675 P

#### VERKAUFE

Ind.-Netzger., stab. Ind.-Netzger., div. Bauteile gegen bar oder Briefm. Schaltpläne und Liste durch Nr. 8677 S

FUNKSCHAU - Jahrgänge 1948–1955 abzugeben. A. Ulbrich, Gießen, Moltke-straße 26

Strom-Spannungswandler für Meßzwecke. Trans-formatoren bis 2 kVA. Kapazität frei. Neuent-wicklung in 10 A.-Tagen. Vakuumtränkanlage vorhanden. Anfragen unter Nr. 8673 M

Valvo Bildröhre AW 53-80, absol, neuwertig, ca. 10 Betriebsstd., preisgün-stig abzugeben. Angeb. unter Nr. 8674 N

1 Schallplatten-Bar (Acella) mit Verstärker, 3
Laufwerken, 6 Kopfhörer
u. 2 Schallplatten-Regale,
zu. 300.— DM. ElektroPeters, Essen - Borbeck,
Wolfsbankstr. 10, T 60715 Schallplatten - Automat "Favorit", 40 Platten, voll-kommen neu, DM 200.— unter Neupreis zu ver-kaufen. Zuschriften unter Nr. 8681 W

Drehspul - Einbauinstrumente 50 μA Endaus-schlag völlig neu aus Industrie - Export - Restposten,  $R_i = 800 \Omega$ , Nullpunktkorrektur, rechteckig 77 × 70 mm, Ein-bautiefe 28 mm, Skalen-länge 50 mm mit 15 Skalenstrichen, leicht einzu-stellen auch auf Null-punkt Mitte 25-0-25 µA nur 19.85 DM; 25-Watt-Getriebemotore für Drehantennen, 3 U/min, völlig wetterfest, Gew. 2 kg, Getriebe 3000:1, Dreh-moment 0,75 mkg, Vor-u. Rückwärtslauf, 24 V= oder ~, Gußgehäuse 14× 10 × 11 cm, 47.50 DM; Nachnahmeversand.

R. Schünemann, Funk- u. Meßgeräte, Berlin-Rudow, Neuhoferstr. 24, Telefon

Jap. Nähmaschinen - Motore 70/220 Volt \_ , Fußanlasser, Schukokabel, Keilriemen, kompl. DM 55.—. Nachnahme RADIO-WER-NERT, BERCHTESGA DEN, BAHNHOFSTR. 2 BERCHTESGA-

Tonbandgeräte und Ton-bänder liefern wir preis-günstig. Bitte mehrfar-bige Prospekte anfordern. Neumüller & Co. GmbH München 13, Schraudolph-straße 2/F 1

Kompl. mont. 15-W-Verst. jed. nicht gesch., billigst zu verk. Piffl, Chieming/ Obb.

#### SUCHE

Suche dringend 3 Sätze Allei - Einheitsspulen für Dreikreiser gewickelt od. ungewickelt, komplett od.

einzeln. Fr. Prenkel, Berlin-Charlottenbg., Bismarckstr. 47

Katodenstrahl - Oszillograf, auch älter oder de-fekt, und Original DKE zu kaufen gesucht. An-gebote unter Nr. 8680 V

Suche 2 Hornlautsprecher 12...20 W, ARW-Radio, Auerbach (Opf.)

Tonbandgerät für 38 cm Geschwindigkeit, auch ält. Modell, kft. Schiegl, Nürnbg., Burgstr. 21

Holländische Firma sucht gebrauchte Fernsehappa-rate. Baujahr ab 1957 gegen "Taxlisten - Preise". Wenigstens 10 Stück je Adresse. Zuschriften erbeten unter Nr. 8671 K

Antennenmeßgerät für VHF und kleiner Service-Oszillograf, gebr. zu kau-fen gesucht. Radio-Vogl, Garmisch

Rundfunk- und Spezial-röhren aller Art sowie Halbleitererzeugnisse,

möglichst in größeren Partien zu kauf. gesucht. Ausführliche schriftliche Angebote erbeten. Dr. Hans Bürklin, Mün-

chen 15, Schillerstr. 40 Labor-Instr. aller Art. Charlottenbg. Berlin W 35 Motoren.

Hans Hermann FROMM sucht ständig alle Emp-fangs- und Senderöhren, Wehrmachtsröhr., Stabilisatoren, Osz.-Röhr. usw. zu günst. Beding. Berlin-Wilmersdorf, Fehrbelliner Platz 3, Tel. 87 33 95

Kaufe Röhren, Gleichrich-ter usw. **Heinze, Coburg.** Fach 507

Radioröhren, Spezialröh-ren, Widerstände, Kon-densatoren, Transistoren, Dioden u. Relais, kleine und große Posten gegen Kassa zu kaufen gesucht. Neumüller & Co. GmbH, München 13, Schraudolphstraße 2/F 1

Radio - Röhren, Spezial-röhr., Senderöhr. gegen Kasse zu kauf. gesucht. RIMPEX, Hamburg-Gr.-Flotthek Grottenstr 24. Flottbek, Grottenstr. 24

Röhren aller Art kauft geg. Kasse Röhr.-Müller, Frankfurt/M., Kaufunger Straße 24

#### VERSCHIEDENES

SCHALLPLATTEN - AUF-NAHMEN von Ihren Bandaufnahmen u. Preßpanuaumanmen u. Preß-platten fertigt: Studio POLSTER, HAMBURG 1, Danziger Straße 76, Tele-fon: 24 29 73

Elektromechan. Werkstatt sucht Aufträge in Mon-tage- u. Schaltarbeiten. Zuschriften erbeten unter Nr. 8672 L

Schallplatten-Herstellung, Tonaufnahmen für: Film, Funk, Wirtschaft, Tonstudio u. Ela-Technik, Ing. Franz Kreuz, Trier, Postfach 501

Gutgehendes. Radio-Fernseh-Fachgeschäft in Kreis-stadt Süddeutschlands, zentrale Lage, zum 1. 1. 62 an Fachmann zu verb2 an radmann zu ver-pachten. Jahresumsatz 350 000.— DM, erforder-lich 20 000 DM. Zuschrif-ten unter Nr. 8685 E Die FUNKSCHAU hat Abonnenten v. a. auch in:

**Agypten Athiopien** Algerien

Argentinien

Australien

Belgien

Bolivien

Brasilien

Bulgarien Chile

CSR

Dänemark

England

Finnland

Frankreich

Griechenland

Holland

Indien

Indonesien

Irland

Island

Israel

Italien Japan

Jugoslawien

Kanada

Kolumbien

Liberia

Libyen

Luxembura

Marokko

Mexiko

Nigeria

Norwegen

**Osterreich** 

Pakistan

Panama Paraguay

Peru

Philippinen

Portugal

Rumänien

Salvador Spanien

Sudan

Südafr. Union

Syrien

Schweden

Schweiz

Türkei

UdSSR

Ungarn Uruguay

USA

Venezuela

#### Vertrauen und Ansehen

genießt die FUNKSCHAU durch ihre umfassende Berichterstattung bei allen Fachleuten, Nur so konnte die für eine Fachzeitschrift enorme Auflage von

#### 45 000 Exemplaren pro Heft

erreicht, bzw. schon überschritten werden

#### Vertrauen und Ansehen

in über 60 Ländern der Welt

# Vertrauen und Ansehen

begründen die verkaufsfördernde Wirkung einer Insertion in der FUNKSCHAU

#### Vertrauen und Ansehen

daher auch bei den vielen namhaften Firmen, die die FUNKSCHAU wegen ihrer Vorzüge schätzen und laufend als Träger ihrer Werbung verwenden

#### Die Daten der nächsten Hefte:

Nr. 22, 2. November-Ausgabe

Anzeigenschluß: 1.11.61

Nr. 23, 1. Dezember-Ausgabe

Anzeigenschluß: 15.11.61

Nr. 24. 2. Dezember-Ausgabe Weihnachtsheft und Jahresschlußheft

Anzeigenschluß: 1.12.61

Bitte schicken Sie uns rechtzeitig Ihre Dispositionen.

FRANZIS-VERLAG Anzeigen-Abteilung, MÜNCHEN 37, POSTFACH Telefon 55 16 25, Fernschreiber 05 22301

# REVERBEO I A CALLE LA CHALLE LA CHAL



**Reverbeo** = **Nachhall.** Reverbeo gibt das Klangerlebnis und die Großraum-Akustik internationaler Konzertsäle. Dieser faszinierende Fortschritt macht ein neues Hören möglich. Führen Sie Ihren Kunden die Philips Geräte mit Reverbeo vor. Der Klang überrascht, begeistert! Selten war ein Fortschritt der Rundfunkentwicklung so hörbar wie dieser.

plano = im Stil unserer Zeit. Breite, flache Formen entsprechen dem modernen, internationalen Geschmack. Die gestreckte Philips plano-Linie ermöglicht weit auseinanderliegende Lautsprecher für eine optimale Stereo-Wiedergabe. Informieren Sie sich über das neue Philips-Programm. Es ist so vielseitig, daß Sie bestimmt immer das Richtige anbieten können. Und — Ihre Kunden haben Vertrauen zu Philips.



Fortschritt für alle

.nimm doch PHILIPS